尊敬的开发者您好,针对可变输入和固定输入的优化方式略有不同,但仍有几个信息希望和您对齐1. 300和500,是指hwtime吗2. 两种模式下,除了可变输入外,其他配置是否完全一致,是否方便将配置发出。3. 相关模型基础backbone请问是否方便提供。展开
尊敬的开发者您好,针对可变输入和固定输入的优化方式略有不同,但仍有几个信息希望和您对齐1. 300和500,是指hwtime吗2. 两种模式下,除了可变输入外,其他配置是否完全一致,是否方便将配置发出。3. 相关模型基础backbone请问是否方便提供。展开
非动态时的配置文件:
{
"archs": ["mtp_372"],
"graph_shape_mutable": false,
"precision_config":{
"precision_mode":"force_float16"
},
"opt_config": {
"type64to32_conversion": true,
"conv_scale_fold": true }
}
命令:
./onnx_build --onnx ./bert_squad/bert-base.onnx --precision force_float16 --input_dims 24,128 24,128 24,128 --calibration false --mlu_arch mtp_372 --build_config config.json
动态时的配置文件:
{
"archs": ["mtp_372"],
"graph_shape_mutable": true,
"precision_config":{
"precision_mode":"force_float16"
},
"opt_config": {
"type64to32_conversion": true,
"conv_scale_fold": true }
}
命令:
./onnx_build --onnx ./bert_squad/bert-base.onnx --precision force_float16 --calibration false --mlu_arch mtp_372 --build_config config.json
pytorch导出的bert_base:=======动态model下测试命令=======/usr/local/neuware/bin/mm_run --magicmind_model /usr/local/neuware/samples/magicmind/mm_build/build/bert_base_dynamic.model --input_dims 24,128 24,128 24,128 --threads 1 --bind_cluster 0 --duration 30 --iterations 20 --kernel_capture 0=======非动态model下测试结果=======Iterations: 20Host Wall Time (s): 1.09576MLU Compute Time (s): 1.09463Throughput (qps): 438.052=======非动态model下测试命令=======/usr/local/neuware/bin/mm_run --magicmind_model /usr/local/neuware/samples/magicmind/mm_build/build/bert_base_bs24_seq128.model --input_dims 24,128 24,128 24,128 --threads 1 --bind_cluster 0 --duration 30 --iterations 20 --kernel_capture 0=======非动态model下测试结果=======Iterations: 20Host Wall Time (s): 0.970254MLU Compute Time (s): 0.969134Throughput (qps): 494.716展开
打错了一个地方,第一处是“动态下测试结果”
尊敬的开发者您好,针对可变输入和固定输入的优化方式略有不同,但仍有几个信息希望和您对齐1. 300和500,是指hwtime吗2. 两种模式下,除了可变输入外,其他配置是否完全一致,是否方便将配置发出。3. 相关模型基础backbone请问是否方便提供。展开
pytorch导出的bert_base:
=======动态model下测试命令=======
/usr/local/neuware/bin/mm_run --magicmind_model /usr/local/neuware/samples/magicmind/mm_build/build/bert_base_dynamic.model --input_dims 24,128 24,128 24,128 --threads 1 --bind_cluster 0 --duration 30 --iterations 20 --kernel_capture 0
=======非动态model下测试结果=======
Iterations: 20
Host Wall Time (s): 1.09576
MLU Compute Time (s): 1.09463
Throughput (qps): 438.052
=======非动态model下测试命令=======
/usr/local/neuware/bin/mm_run --magicmind_model /usr/local/neuware/samples/magicmind/mm_build/build/bert_base_bs24_seq128.model --input_dims 24,128 24,128 24,128 --threads 1 --bind_cluster 0 --duration 30 --iterations 20 --kernel_capture 0
=======非动态model下测试结果=======
Iterations: 20
Host Wall Time (s): 0.970254
MLU Compute Time (s): 0.969134
Throughput (qps): 494.716
请登录后评论