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Preface



Welcome

Since	its	open	source	release	in	November	2015,	TensorFlow	has	become	one	of	the
most	exciting	machine	learning	libraries	available.	It	is	being	used	more	and	more	in
research,	production,	and	education.	The	library	has	seen	continual	improvements,
additions,	and	optimizations,	and	the	TensorFlow	community	has	grown	dramatically.
With	TensorFlow	for	Machine	Intelligence,	we	hope	to	help	new	and	experienced	users
hone	their	abilities	with	TensorFlow	and	become	fluent	in	using	this	powerful	library	to	its
fullest!

https://www.tensorflow.org/
https://bleedingedgepress.com/tensor-flow-for-machine-intelligence/


Background	education

While	this	book	is	primarily	focused	on	the	TensorFlow	API,	we	expect	you	to	have
familiarity	with	a	number	of	mathematical	and	programmatic	concepts.	These	include:

Derivative	calculus	(single-variable	and	multi-variables)
Matrix	algebra	(matrix	multiplication	especially)
Basic	understanding	of	programming	principles
Basic	machine	learning	concepts

In	addition	to	the	above,	you	will	get	more	out	of	this	book	if	they	have	the	following
knowledge:

Experience	with	Python	and	organizing	modules
Experience	with	the	NumPy	library
Experience	with	the	matplotlib	library
Knowledge	of	more	advanced	machine	learning	concepts,	especially	feed-forward
neural	networks,	convolutional	neural	networks,	and	recurrent	neural	networks

When	appropriate,	we’ll	include	refresher	information	to	re-familiarize	the	reader	with
some	of	the	concepts	they	need	to	know,	to	fully	understand	the	math	and/or	Python
concepts.

http://www.numpy.org/
http://matplotlib.org/


What	you	should	expect	to	learn
This	TensorFlow	book	introduces	the	framework	and	the	underlying	machine	learning

concepts	that	are	important	to	harness	machine	intelligence.

After	reading	this	book,	you	should	know	the	following:

A	deep	understanding	of	the	core	TensorFlow	API
The	TensorFlow	workflow:	graph	definition	and	graph	execution
How	to	install	TensorFlow	on	various	devices
Best	practices	for	structuring	your	code	and	project
How	to	create	core	machine	learning	models	in	TensorFlow
How	to	implement	RNNs	and	CNNs	in	TensorFlow
How	to	deploy	code	with	TensorFlow	Serving
The	fundamentals	of	utilizing	TensorBoard	to	analyze	your	models



This	book’s	layout



Section	1:	Getting	started	with	TensorFlow
The	first	section	of	this	book	helps	get	you	on	your	feet	and	ready	to	use	TensorFlow.

The	first	chapter	is	the	introduction,	which	provides	a	brief	historical	context	for
TensorFlow	and	includes	a	discussion	about	TensorFlow’s	design	patterns	as	well	as	the
merits	and	challenges	of	choosing	TensorFlow	as	a	deep	learning	library.

After	the	introduction,	“TensorFlow	Installation”	goes	over	some	considerations	a
person	installing	TensorFlow	should	think	about,	and	includes	detailed	instructions	on
installing	TensorFlow:	both	installing	from	binaries	as	well	as	building	from	source.



Section	2:	TensorFlow	and	Machine	Learning	fundamentals
This	second	section	begins	in	“Fundamentals	of	TensorFlow”	by	getting	TensorFlow

installed	on	your	machine	and	diving	deep	into	the	fundamentals	of	the	TensorFlow	API
without	incorporating	a	lot	of	machine	learning	concepts.	The	goal	is	to	isolate	“learning
TensorFlow”	and	“learning	how	to	do	machine	learning	with	TensorFlow”.	This	will
include	an	in	depth	description	of	many	of	the	most	important	pieces	of	the	TensorFlow
API.	We’ll	also	show	how	you	can	take	a	visual	graph	representation	of	a	model	and
translate	it	into	TensorFlow	code,	as	well	as	verify	that	the	graph	is	modeled	correctly	by
using	TensorBoard.

Once	the	core	API	concepts	are	covered,	we	continue	with	“Machine	Learning	Basics”,
in	which	we	create	simple	machine	learning	models,	such	as	linear	regression,	logistic
regression,	and	clustering,	inside	of	TensorFlow.



Section	3:	Implementing	advanced	deep	models	in	TensorFlow
The	third	section	is	comprised	of	two	chapters,	each	focusing	on	a	different	type	of

more	complex	deep	learning	model.	Each	will	describe	the	model	in	question	and	present
visual	graph	representation	of	what	we	are	trying	to	create.	We’ll	discuss	why	the	model	is
setup	the	way	it	is,	note	any	mathematical	quirks,	and	then	go	over	how	to	set	them	up
effectively	in	TensorFlow.

The	first	model	we’ll	look	at	is	the	Convolutional	Neural	Network,	or	CNN,	in	“Object
Recognition	and	Classification,”	where	we’ll	talk	about	training	TensorFlow	models	on
image	data.	This	will	include	a	discussion	on	the	math	and	purpose	of	convolutions,	how
to	convert	raw	image	data	into	a	TensorFlow-compatible	format,	and	how	to	test	your	final
output.

In	the	chapter	“Natual	Language	Processing	with	Reurrent	Networks,”	we’ll	examine
how	to	properly	create	Recurrent	Neural	Networks,	or	RNNs,	in	TensorFlow.	Looking	at	a
variety	of	natural	language	processing	(NLP)	tasks,	we’ll	see	how	to	use	Long	Short-Term
Memory	(networks)	and	incorporate	pre-trained	word	vectors	in	your	model.



Section	4:	Additional	tips,	techniques,	and	features
The	final	section	of	the	book	will	explore	the	latest	features	available	in	the	TensorFlow

API.	Topics	include	preparing	your	model	for	deployment,	useful	programming	patterns,
and	other	select	subjects.



Other	machine	learning	libraries

TensorFlow	is	not	the	only	open	source	machine	learning	library	out	there.	Below	is	a
short	list	of	various	options	for	deep	learning:

Caffe	focuses	on	convolutional	neural	networks	and	image	processing,	and	is	written
in	C++.
Chainer	is	another	flexible	machine	learning	Python	library	capable	of	utilizing
multiple	GPUs	on	one	machine.
CNTK	is	Microsoft’s	entry	into	the	open	source	machine	learning	library	game.	It
uses	its	own	model	definition	language	to	build	distributed	models	declaratively.
Deeplearning4j	is	a	Java	library	specifically	focused	on	neural	networks.	It	is	built	to
be	scaled	and	integrated	with	Spark,	Hadoop,	and	other	Java-based	distributed
software.
Nervana	Neon	is	an	efficient	Python	machine	learning	library,	which	is	capable	of
using	multiple	GPUs	on	a	single	machine.
Theano	is	an	extremely	flexible	Python	machine	learning	library	written	in	Python.	It
is	popular	in	research,	as	it	is	quite	user	friendly	and	capable	of	defining	complex
models	fairly	easily.	TensorFlow’s	API	is	most	similar	to	Theano’s.
Torch	is	a	machine	learning	library	that	focuses	on	GPU	implementation.	It	is	written
in	Lua,	and	is	backed	by	research	teams	at	several	large	companies.

It’s	beyond	the	scope	of	this	book	to	have	an	in-depth	discussion	on	the	merits	of	each
of	these	libraries,	but	it	is	worth	looking	into	them	if	you	have	the	time.	The	authors	of
TensorFlow	took	inspiration	from	several	of	them	when	designing	the	framework.

http://caffe.berkeleyvision.org/
http://chainer.org/
https://github.com/Microsoft/CNTK
http://deeplearning4j.org/
https://github.com/NervanaSystems/neon
http://deeplearning.net/software/theano/
http://torch.ch/


Further	reading

If,	after	reading	this	book,	you’re	interested	in	pursuing	more	with	TensorFlow,	here	are
a	couple	of	valuable	resources:

The	official	TensorFlow	website,	which	will	contain	the	latest	documentation,	API,
and	tutorials
The	TensorFlow	GitHub	repository,	where	you	can	contribute	to	the	open-source
implementation	of	TensorFlow,	as	well	as	review	the	source	code	directly
Officially	released	machine	learning	models	implemented	in	TensorFlow.	These
models	can	be	used	as-is	or	be	tweaked	to	suit	your	own	goals
The	Google	Research	Blog	provides	the	latest	news	from	Google	related	to
TensorFlow	applications	and	updates.
Kaggle	is	a	wonderful	place	to	find	public	datasets	and	compete	with	other	data-
minded	people
Data.gov	is	the	U.S.	government’s	portal	to	find	public	datasets	all	across	the	United
States

Alright,	that’s	enough	of	a	pep-talk.	Let’s	get	started	with	TensorFlow	for	Machine
Intelligence!

https://www.tensorflow.org/
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/models
https://research.googleblog.com/
https://www.kaggle.com/
https://www.data.gov/
https://bleedingedgepress.com/tensor-flow-for-machine-intelligence/


Part	I.	Getting	started	with	TensorFlow





Chapter	1.	Introduction



Data	is	everywhere

We	are	truly	in	“The	Information	Age.”	These	days,	data	flows	in	from	everywhere:
smartphones,	watches,	vehicles,	parking	meters,	household	appliances-	almost	any	piece
of	technology	you	can	name	is	now	being	built	to	communicate	back	to	a	database
somewhere	in	the	cloud.	With	access	to	seemingly	unlimited	storage	capacity,	developers
have	opted	for	a	“more-is-better”	approach	to	data	warehousing,	housing	petabytes	of	data
gleaned	from	their	products	and	customers.

At	the	same	time,	computational	capabilities	continue	to	climb.	While	the	growth	of
CPU	speeds	has	slowed,	there	has	been	an	explosion	of	parallel	processing	architectures.
Graphics	processing	units	(GPUs),	once	used	primarily	for	computer	games	are	now	being
used	for	general	purpose	computing,	and	they	have	opened	the	floodgates	for	the	rise	of
machine	learning.

Machine	learning,	sometimes	abbreviated	to	“ML,”	uses	general-purpose	mathematical
models	to	answer	specific	questions	using	data.	Machine	learning	has	been	used	to	detect
spam	email,	recommend	products	to	customers,	and	predict	the	value	of	commodities	for
many	years.	In	recent	years,	a	particular	kind	of	machine	learning	has	seen	an	incredible
amount	of	success	across	all	fields:	deep	learning.



Deep	learning

“Deep	learning”	has	become	the	term	used	to	describe	the	process	of	using	multi-layer
neural	networks-	incredibly	flexible	models	that	can	use	a	huge	variety	and	combination
of	different	mathematical	techniques.	They	are	incredibly	powerful,	but	our	ability	to
utilize	neural	networks	to	great	effect	has	been	a	relatively	new	phenomena,	as	we	have
only	recently	hit	the	critical	mass	of	data	availability	and	computational	power	necessary
to	boost	their	capabilities	beyond	those	of	other	ML	techniques.

The	power	of	deep	learning	is	that	it	gives	the	model	more	flexibility	in	deciding	how	to
use	data	to	best	effect.	Instead	of	a	person	having	to	make	wild	guesses	as	to	which	inputs
are	worth	including,	a	properly	tuned	deep	learning	model	can	take	all	parameters	and
automatically	determine	useful,	higher-order	combinations	of	its	input	values.	This
enables	a	much	more	sophisticated	decision-making	process,	making	computers	more
intelligent	than	ever.	With	deep	learning,	we	are	capable	of	creating	cars	that	drive
themselves	and	phones	that	understand	our	speech.	Machine	translation,	facial
recognition,	predictive	analytics,	machine	music	composition,	and	countless	artificial
intelligence	tasks	have	become	possible	or	significantly	improved	due	to	deep	learning.

While	the	mathematical	concepts	behind	deep	learning	have	been	around	for	decades,
programming	libraries	dedicated	to	creating	and	training	these	deep	models	have	only
been	available	in	recent	years.	Unfortunately,	most	of	these	libraries	have	a	large	trade-off
between	flexibility	and	production-worthiness.	Flexible	libraries	are	invaluable	for
researching	novel	model	architectures,	but	are	often	either	too	slow	or	incapable	of	being
used	in	production.	On	the	other	hand,	fast,	efficient,	libraries	which	can	be	hosted	on
distributed	hardware	are	available,	but	they	often	specialize	in	specific	types	of	neural
networks	and	aren’t	suited	to	researching	new	and	better	models.	This	leaves	decision
makers	with	a	dilemma:	should	we	attempt	to	do	research	with	inflexible	libraries	so	that
we	don’t	have	to	reimplement	code,	or	should	we	use	one	library	for	research	and	a
completely	different	library	for	production?	If	we	choose	the	former,	we	may	be	unable	to
test	out	different	types	of	neural	network	models;	if	we	choose	the	latter,	we	have	to
maintain	code	that	may	have	completely	different	APIs.	Do	we	even	have	the	resources
for	this?

TensorFlow	aims	to	solve	this	dilemma.



TensorFlow:	a	modern	machine	learning	library

TensorFlow,	open	sourced	to	the	public	by	Google	in	November	2015,	is	the	result	of
years	of	lessons	learned	from	creating	and	using	its	predecessor,	DistBelief.	It	was	made
to	be	flexible,	efficient,	extensible,	and	portable.	Computers	of	any	shape	and	size	can	run
it,	from	smartphones	all	the	way	up	to	huge	computing	clusters.	It	comes	with	lightweight
software	that	can	instantly	productionize	your	trained	model,	effectively	eliminating	the
need	to	reimplement	models.	TensorFlow	embraces	the	innovation	and	community-
engagement	of	open	source,	but	has	the	support,	guidance,	and	stability	of	a	large
corporation.	Because	of	its	multitude	of	strengths,	TensorFlow	is	appropriate	for
individuals	and	businesses	ranging	from	startups	to	companies	as	large	as,	well,	Google.

If	you	and	your	colleagues	have	data,	a	question	to	answer,	and	a	computer	that	turns
on,	you’re	in	luck-	as	TensorFlow	could	be	the	missing	piece	you’ve	been	looking	for.



TensorFlow:	a	technical	overview

This	section	aims	to	provide	high	level	information	about	the	TensorFlow	library,	such
as	what	it	is,	its	development	history,	use	cases,	and	how	it	stacks	up	against	competitors.
Decision	makers,	stakeholders,	and	anyone	who	wants	to	understand	the	background	of
TensorFlow	will	benefit	from	reading	this	section.



A	brief	history	of	deep	learning	at	Google
Google’s	original	large-scale	deep	learning	tool	was	DistBelief,	a	product	of	the	Google

Brain	team.	Since	its	creation,	it	has	been	used	by	dozens	of	teams	for	countless	projects
involving	deep	neural	networks.	However,	as	with	many	first-of-its-kind	engineering
projects,	there	were	design	mistakes	that	have	limited	the	usability	and	flexibility	of
DistBelief.	Sometime	after	the	creation	of	DistBelief,	Google	began	working	on	its
successor,	whose	design	would	apply	lessons	learned	from	the	usage	and	limitations	of	the
original	DistBelief.	This	project	became	TensorFlow,	which	was	released	to	the	public	in
November	2015.	It	quickly	turned	into	a	popular	library	for	machine	learning,	and	it	is
currently	being	used	for	natural	language	processing,	artificial	intelligence,	computer
vision,	and	predictive	analytics.



What	is	TensorFlow?

Let’s	take	a	high-level	view	of	TensorFlow	to	get	an	understanding	what	problems	it	is
trying	to	solve.



Breaking	down	the	one-sentence	description
Looking	at	the	TensorFlow	website,	the	very	first	words	greeting	visitors	is	the

following	(rather	vague)	proclamation:

TensorFlow	is	an	open	source	software	library	for	machine	intelligence.

Just	below,	in	the	first	paragraph	under	“About	TensorFlow,”	we	are	given	an
alternative	description:

TensorFlow™	is	an	open	source	software	library	for	numerical	computation	using	data	flow	graphs.

This	second	definition	is	a	bit	more	specific,	but	may	not	be	the	most	comprehensible
explanation	for	those	with	less	mathematical	or	technical	backgrounds.	Let’s	break	it
down	into	chunks	and	figure	out	what	each	piece	means.

Open	source:
TensorFlow	was	originally	created	by	Google	as	an	internal	machine	learning	tool,	but

an	implementation	of	it	was	open	sourced	under	the	Apache	2.0	License	in	November
2015.	As	open	source	software,	anyone	is	allowed	to	download,	modify,	and	use	the	code.
Open	source	engineers	can	make	additions/improvements	to	the	code	and	propose	their
changes	to	be	included	in	a	future	release.	Due	to	the	popularity	TensorFlow	has	gained,
there	are	improvements	being	made	to	the	library	on	a	daily	basis-	created	by	both	Google
and	third-party	developers.

Notice	that	we	say	“an	implementation”	and	not	“TensorFlow”	was	open	sourced.	Technically	speaking,
TensorFlow	is	an	interface	for	numerical	computation	as	described	in	the	TensorFlow	white	paper,	and	Google
still	maintains	its	own	internal	implementation	of	it.	However,	the	differences	between	the	open	source
implementation	and	Google’s	internal	implementation	are	due	to	connections	to	other	internal	software,	and
not	Google	“hoarding	the	good	stuff”.	Google	is	constantly	pushing	internal	improvements	to	the	public
repository,	and	for	all	intents	and	purposes	the	open	source	release	contains	the	same	capabilities	as	Google’s
internal	version.

For	the	rest	of	this	book,	when	we	say	“TensorFlow”,	we	are	referring	to	the	open	source	implementation.

Library	for	numerical	computation
Instead	of	calling	itself	a	“library	for	machine	learning”,	it	uses	the	broader	term

“numerical	computation.”	While	TensorFlow	does	contain	a	package,	“learn”	(AKA
“Scikit	Flow”),	that	emulates	the	one-line	modeling	functionality	of	Scikit-Learn,	it’s
important	to	note	that	TensorFlow’s	primary	purpose	is	not	to	provide	out-of-the-box
machine	learning	solutions.	Instead,	TensorFlow	provides	an	extensive	suite	of	functions
and	classes	that	allow	users	to	define	models	from	scratch	mathematically.	This	allows
users	with	the	appropriate	technical	background	to	create	customized,	flexible	models
quickly	and	intuitively.	Additionally,	while	TensorFlow	does	have	extensive	support	for
ML-specific	functionality,	it	is	just	as	well	suited	to	performing	complex	mathematical
computations.	However,	since	this	book	is	focused	on	machine	learning	(and	deep

https://www.tensorflow.org/
http://www.apache.org/licenses/LICENSE-2.0
http://download.tensorflow.org/paper/whitepaper2015.pdf
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/learn/python/learn
http://scikit-learn.org/stable/


learning	in	particular),	we	will	usually	talk	about	TensorFlow	being	used	to	create
machine	learning	models.

Data	flow	graphs
The	computational	model	for	TensorFlow	is	a	directed	graph,	where	the	nodes

(typically	represented	by	circles	or	boxes)	are	functions/computations,	and	the	edges
(typically	represented	by	arrows	or	lines)	are	numbers,	matrices,	or	tensors.

There	are	a	number	of	reasons	this	is	useful.	First,	many	common	machine	learning
models,	such	as	neural	networks,	are	commonly	taught	and	visualized	as	directed	graphs
already,	which	makes	their	implementation	more	natural	for	machine	learning
practitioners.	Second,	by	splitting	up	computation	into	small,	easily	differentiable	pieces,
TensorFlow	is	able	to	automatically	compute	the	derivative	of	any	node	(or	“Operation”,
as	they’re	called	in	TensorFlow)	with	respect	to	any	other	node	that	can	affect	the	first
node’s	output.	Being	able	to	compute	the	derivative/gradient	of	nodes,	especially	output
nodes,	is	crucial	for	setting	up	machine	learning	models.	Finally,	by	having	the
computation	separated,	it	makes	it	much	easier	to	distribute	work	across	multiple	CPUs,
GPUs,	and	other	computational	devices.	Simply	split	the	whole,	larger	graph	into	several
smaller	graphs	and	give	each	device	a	separate	part	of	the	graph	to	work	on	(with	a	touch
of	logic	to	coordinate	sharing	information	across	devices)

https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Artificial_neural_network


Quick	aside:	what	is	a	tensor?
A	tensor,	put	simply,	is	an	n-dimensional	matrix.	So	a	2-dimensional	tensor	is	the	same	as	a	standard	matrix.
Visually,	if	we	view	an	 	matrix	as	a	square	array	of	numbers	(m	numbers	tall,	and	m	numbers	wide),
we	can	view	an	 	tensor	as	a	cube	array	of	numbers	(m	numbers	tall,	m	numbers	wide,	and	m
numbers	deep).	In	general,	you	can	think	about	tensors	the	same	way	you	would	matrices,	if	you	are	more
comfortable	with	matrix	math!



Beyond	the	one-sentence	description
The	phrase	“open	source	software	library	for	numerical	computation	using	data	flow

graphs”	is	an	impressive	feat	of	information	density,	but	it	misses	several	important
aspects	of	TensorFlow	that	make	it	stand	out	as	a	machine	learning	library.	Here	are	a	few
more	components	that	also	help	make	TensorFlow	what	it	is:

Distributed
As	alluded	to	when	described	data	flow	graphs	above,	TensorFlow	is	designed	to	be

scalable	across	multiple	computers,	as	well	as	multiple	CPUs	and	GPUs	within	single
machines.	Although	the	original	open	source	implementation	did	not	have	distributed
capabilities	upon	release,	as	of	version	0.8.0	the	distributed	runtime	is	available	as	part	of
the	TensorFlow	built-in	library.	While	this	initial	distributed	API	is	a	bit	cumbersome,	it	is
incredibly	powerful.	Most	other	machine	learning	libraries	do	not	have	such	capabilities,
and	it’s	important	to	note	that	native	compatibility	with	certain	cluster	managers	(such	as
Kubernetes)	are	being	worked	on.

A	suite	of	software
While	“TensorFlow”	is	primarily	used	to	refer	to	the	API	used	to	build	and	train

machine	learning	models,	TensorFlow	is	really	a	bundle	of	software	designed	to	be	used	in
tandem	with:

TensorFlow	is	the	API	for	defining	machine	learning	models,	training	them	with
data,	and	exporting	them	for	further	use.	The	primary	API	is	accessed	through
Python,	while	the	actual	computation	is	written	in	C++	.	This	enables	data	scientists
and	engineers	to	utilize	a	more	user-friendly	environment	in	Python,	while	the	actual
computation	is	done	with	fast,	compiled	C++	code.	There	is	a	C++	API	for	executing
TensorFlow	models,	but	it	is	limited	at	this	time	and	not	recommended	for	most
users.
TensorBoard	is	graph	visualization	software	that	is	included	with	any	standard
TensorFlow	installation.	When	a	user	includes	certain	TensorBoard-specific
operations	in	TensorFlow,	TensorBoard	is	able	to	read	the	files	exported	by	a
TensorFlow	graph	and	can	give	insight	into	a	model’s	behavior.	It’s	useful	for
summary	statistics,	analyzing	training,	and	debugging	your	TensorFlow	code.
Learning	to	use	TensorBoard	early	and	often	will	make	working	with	TensorFlow
that	much	more	enjoyable	and	productive.
TensorFlow	Serving	is	software	that	facilitates	easy	deployment	of	pre-trained
TensorFlow	models.	Using	built-in	TensorFlow	functions,	a	user	can	export	their
model	to	a	file	which	can	then	be	read	natively	by	TensorFlow	Serving.	It	is	then	able
to	start	a	simple,	high-performance	server	that	can	take	input	data,	pass	it	to	the
trained	model,	and	return	the	output	from	the	model.	Additionally,	TensorFlow
Serving	is	capable	of	seamlessly	switching	out	old	models	with	new	ones,	without
any	downtime	for	end-users.	While	Serving	is	possibly	the	least	recognized	portion

http://kubernetes.io/
https://www.tensorflow.org/versions/master/api_docs/index.html
https://www.tensorflow.org/versions/master/how_tos/graph_viz/index.html
https://tensorflow.github.io/serving/


of	the	TensorFlow	ecosystem,	it	may	be	what	sets	TensorFlow	apart	from	its
competition.	Incorporating	Serving	into	a	production	environment	enables	users	to
avoid	reimplementing	their	model,	who	can	instead	just	pass	along	their	TensorFlow
export.	TensorFlow	Serving	is	written	entirely	in	C++	,	and	its	API	is	only	accessible
through	C++.

We	believe	that	using	TensorFlow	to	its	fullest	means	knowing	how	to	use	all	of	the
above	in	conjunction	with	one	another.	Hence,	we	will	be	covering	all	three	pieces	of
software	in	this	book.



When	to	use	TensorFlow

Let’s	take	a	look	at	some	use	cases	for	TensorFlow.	In	general,	TensorFlow	is	generally
a	good	choice	for	most	machine	learning	purposes.	Below	is	a	short	list	of	uses	that
TensorFlow	is	specifically	targeted	at.

Researching,	developing,	and	iterating	through	new	machine	learning
architectures.	Because	TensorFlow	is	incredibly	flexible,	it’s	useful	when	creating	novel,
less-tested	models.	With	some	libraries,	you	are	given	rigid,	pre-built	models	that	are	good
for	prototyping,	but	are	incapable	of	being	modified.

Taking	models	directly	from	training	to	deployment.	As	described	earlier,
TensorFlow	Serving	enables	you	to	quickly	move	from	training	to	deployment.	As	such,	it
allows	for	a	much	faster	iteration	when	creating	a	product	that	depends	on	having	a	model
up-and-running.	If	your	team	needs	to	move	fast,	or	if	you	simply	don’t	have	the	resources
to	reimplement	a	model	in	C++,	Java,	etc.,	TensorFlow	can	give	your	team	the	ability	to
get	your	product	off	the	ground.

Implementing	existing	complex	architectures.	Once	you	learn	how	to	look	at	a
visualization	of	a	graph	and	build	it	in	TensorFlow,	you	will	be	able	to	take	models	from
recent	research	literature	and	implement	them	in	TensorFlow.	Doing	so	can	provide
insight	when	building	future	models	or	even	give	a	strict	improvement	over	the	user’s
current	model.

Large-scale	distributed	models.	TensorFlow	is	incredibly	good	at	scaling	up	over
many	devices,	and	it’s	already	begun	to	replace	DistBelief	for	various	projects	within
Google.	With	the	recent	release	of	the	distributed	runtime,	we’ll	see	more	and	more	cases
of	TensorFlow	being	run	on	multiple	hardware	servers	as	well	as	many	virtual	machines	in
the	cloud.

Create	and	train	models	for	mobile/embedded	systems.	While	much	of	the	attention
on	TensorFlow	has	been	about	its	ability	to	scale	up,	it	is	also	more	than	capable	of	scaling
down.	The	flexibility	of	TensorFlow	extends	to	systems	with	less	computation	power,	and
can	be	run	on	Android	devices	as	well	as	mini-computers	such	as	the	Raspberry	Pi.	The
TensorFlow	repository	includes	an	example	on	running	a	pre-trained	model	on	Android.

https://github.com/samjabrahams/tensorflow-on-raspberry-pi
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android


TensorFlow’s	strengths

Usability

The	TensorFlow	workflow	is	relatively	easy	to	wrap	your	head	around,	and	it’s
consistent	API	means	that	you	don’t	need	to	learn	an	entire	new	way	to	work	when
you	try	out	different	models.
TensorFlow’s	API	is	stable,	and	the	maintainers	fight	to	ensure	that	every
incorporated	change	is	backwards-compatible.
TensorFlow	integrates	seamlessly	with	Numpy,	which	will	make	most	Python-savvy
data	scientists	feel	right	at	home.
Unlike	some	other	libraries,	TensorFlow	does	not	have	any	compile	time.	This	allows
you	to	iterate	more	quickly	over	ideas	without	sitting	around.
There	are	multiple	higher-level	interfaces	built	on	top	of	TensorFlow	already,	such	as
Keras	and	SkFlow.	This	makes	it	possible	to	use	the	benefits	of	TensorFlow	even	if	a
user	doesn’t	want	to	implement	the	entire	model	by	hand.

Flexibility

TensorFlow	is	capable	of	running	on	machines	of	all	shapes	and	sizes.	This	allows	it
to	be	useful	from	supercomputers	all	the	way	down	to	embedded	systems-	and
everything	in	between.
It’s	distributed	architecture	allows	it	to	train	models	with	massive	datasets	in	a
reasonable	amount	of	time.
TensorFlow	can	utilize	CPUs,	GPUs,	or	both	at	the	same	time.

Efficiency

When	TensorFlow	was	first	released,	it	was	surprisingly	slow	on	a	number	of	popular
machine	learning	benchmarks.	Since	that	time,	the	development	team	has	devoted	a
ton	of	time	and	effort	into	improving	the	implementation	of	much	of	TensorFlow’s
code.	The	result	is	that	TensorFlow	now	boasts	impressive	times	for	much	of	it’s
library,	vying	for	the	top	spot	amongst	the	open-source	machine	learning
frameworks.
TensorFlow’s	efficiency	is	still	improving	as	more	and	more	developers	work
towards	better	implementations.

Support

TensorFlow	is	backed	by	Google.	Google	is	throwing	a	ton	of	resources	into
TensorFlow,	since	it	wants	TensorFlow	to	be	the	lingua	franca	of	machine	learning
researchers	and	developers.	Additionally,	Google	uses	TensorFlow	in	its	own	work
daily,	and	is	invested	in	the	continued	support	of	TensorFlow.
An	incredible	community	has	developed	around	TensorFlow,	and	it’s	relatively	easy
to	get	responses	from	informed	members	of	the	the	community	or	developers	on
GitHub.

http://keras.io/
https://github.com/tensorflow/skflow


Google	has	released	several	pre-trained	machine	learning	models	in	TensorFlow.
They	are	free	to	use	and	can	allow	prototypes	to	get	off	the	ground	without	needing
massive	data	pipelines.

Extra	features

TensorBoard	is	invaluable	when	debugging	and	visualizing	your	model,	and	there	is
nothing	quite	like	it	available	in	other	machine	learning	libraries.
TensorFlow	Serving	may	be	the	piece	of	software	that	allows	more	startup	companies
to	devote	services	and	resources	to	machine	learning,	as	the	cost	of	reimplementing
code	in	order	to	deploy	a	model	is	no	joke.

https://github.com/tensorflow/models


Challenges	when	using	TensorFlow

Distributed	support	is	still	maturing

Although	it	is	officially	released,	using	the	distributed	features	in	TensorFlow	is	not	as
smooth	as	you	might	expect.	As	of	this	writing,	it	requires	manually	defining	the	role	of
each	device,	which	is	tedious	and	error-prone.	Because	it	is	brand	new,	there	are	less
examples	to	learn	from,	although	this	should	improve	in	the	future.	As	mentioned	earlier,
support	for	Kubernetes	is	currently	in	the	development	pipeline,	but	for	now	it’s	still	a
work	in	progress.

Implementing	custom	code	is	tricky

There	is	an	official	how-to	on	creating	your	own	operations	in	TensorFlow,	but	there	is
a	fair	amount	of	overhead	involved	when	implementing	customized	code	into	TensorFlow.
If,	however,	you	are	hoping	to	contribute	it	to	the	master	repository,	the	Google
development	team	is	quick	to	help	answer	questions	and	look	over	your	code	to	bring	your
work	into	the	fold.

Certain	features	are	still	missing

If	you	are	an	experience	machine	learning	professional	with	a	ton	of	knowledge	about	a
different	framework,	it’s	likely	that	there	is	going	to	be	a	small	but	useful	feature	you	like
that	hasn’t	been	implemented	in	TensorFlow	yet.	Often,	there	is	a	way	to	get	around	it,	but
that	won’t	stop	you	from	saying	“Why	isn’t	this	natively	supported	yet?”

https://www.tensorflow.org/versions/master/how_tos/adding_an_op/index.html


Onwards	and	upwards!

Needless	to	say,	we	are	incredibly	excited	about	the	future	of	TensorFlow,	and	we	are
thrilled	to	give	you	a	running	start	with	such	a	powerful	tool.	In	the	next	chapter,	you’ll
install	TensorFlow	and	learn	all	about	the	core	TensorFlow	library,	basic	use	patterns,	and
environment.





Chapter	2.	TensorFlow	Installation
Before	you	get	started	using	TensorFlow,	you’ll	need	to	install	the	software	onto	your

machine.	Fortunately,	the	official	TensorFlow	website	provides	a	complete,	step-by-step
guide	to	installing	TensorFlow	onto	Linux	and	Mac	OS	X	computers.	This	chapter
provides	our	recommendations	for	different	options	available	for	your	installation,	as	well
as	information	regarding	additional	third-party	software	that	integrates	well	with
TensorFlow.	We	also	include	a	reference	installation	from	source	to	help	guide	you
through	installing	TensorFlow	with	GPU	support.

If	you	are	already	comfortable	with	using	Pip/Conda,	virtual	environments,	or	installing
from	sources,	feel	free	to	simply	use	the	official	guide	here:

https://www.tensorflow.org/versions/master/get_started/os_setup.html

https://www.tensorflow.org/versions/master/get_started/os_setup.html
https://www.tensorflow.org/versions/master/get_started/os_setup.html


Selecting	an	installation	environment

Many	pieces	of	software	use	libraries	and	packages	that	are	maintained	separately.	For
developers,	this	is	a	good	thing,	as	it	enables	code	reuse,	and	they	can	focus	on	creating
new	functionality	instead	of	recreating	code	that	is	already	available.	However,	there	is	a
cost	associated	with	doing	this.	If	a	program	depends	on	having	another	library	available
in	order	to	work	properly,	the	user	or	software	must	ensure	that	any	machine	running	its
code	has	that	library	installed.	At	first	glance,	this	may	seem	like	a	trivial	problem-	simply
install	the	required	dependencies	along	with	your	software,	right?	Unfortunately,	this
approach	could	have	some	unintended	consequences,	and	frequently	does.

Imagine	the	following	scenario:	You	find	an	awesome	piece	of	software,	Software	A,	so
you	download	and	install	it.	As	part	of	its	installation	script,	Software	A	looks	for	another
piece	of	software	that	it	depends	on	and	installs	it	if	your	computer	doesn’t	have	it.	We’ll
call	that	software	Dependency,	which	is	currently	on	version	1.0.	Software	A	installs
Dependency	1.0,	finishes	its	own	installation,	and	all	is	well.	Some	time	in	the	future,	you
stumble	upon	another	program	you’d	like	to	have,	Software	B.	Software	B	uses
Dependency	2.0,	which	is	a	complete	overhaul	from	Dependency	1.0,	and	is	not
backwards	compatible.	Because	of	the	way	Dependency	is	distributed,	there	is	no	way	to
have	both	version	1.0	and	2.0	running	side-by-side,	as	this	would	cause	ambiguity	when
using	it	(Both	are	imported	as	Dependency:	which	version	should	be	used?).	Software	B
overwrites	Dependency	1.0	with	version	2.0	and	completes	its	install.	You	find	out	(the
hard	way)	that	Software	A	is	not	compatible	with	Dependency	2.0,	and	is	completely
broken.	All	is	not	well.	How	can	we	run	both	Software	A	and	Software	B	on	the	same
machine?	It’s	important	for	us	to	know,	as	TensorFlow	depends	on	several	open	pieces	of
software.	With	Python	(the	language	that	packages	TensorFlow),	there	are	a	couple	of
ways	to	get	around	this	dependency	clashing,	as	you’ll	see	next.

1.	 Package	dependencies	inside	of	codebase:	Instead	of	relying	on	a	system-level
package	or	library,	developers	can	choose	to	put	the	exact	version	of	the	library
inside	of	their	own	code	and	reference	it	locally.	In	this	way,	all	of	the	software’s
required	code	is	available	and	won’t	be	affected	by	external	changes.	This	is	not
without	its	own	downsides,	however.	First,	it	increases	the	disk	space	required	to
install	the	software,	which	means	it	takes	longer	to	install	and	becomes	more	costly
to	use.	Second,	the	user	could	have	the	dependency	installed	globally	anyway,	which
means	that	the	local	version	is	redundant	and	eating	up	space.	Finally,	it’s	possible
that	the	dependency	puts	out	a	critical,	backwards	compatible	update,	which	fixes	a
serious	security	vulnerability.	It	now	becomes	the	software	developer’s	responsibility
to	update	the	dependency	in	their	codebase,	instead	of	having	the	user	update	it	from
a	package	manager.	Unfortunately,	the	end-user	doesn’t	have	a	lot	of	say	with	this
method,	as	it’s	up	to	the	developer	to	decide	when	to	include	dependencies	directly.
For	several	of	its	dependencies,	TensorFlow	does	not	include	them,	so	they	must	be
installed	separately.

2.	 Use	dependency	environments:	Some	package	distribution	managers	have	related



software	that	create	environments,	inside	of	which	specific	versions	of	software	can
be	maintained	independently	of	those	contained	in	other	environments.	With	Python,
there	are	a	couple	of	options.	For	the	standard	distributions	of	Python,	Virtualenv	is
available.	If	you	are	using	Anaconda,	it	comes	with	a	built-in	environment	system
with	its	package	manager,	Conda.	We’ll	cover	how	to	install	TensorFlow	using	both
of	these	below.

3.	 Use	containers:	Containers,	such	as	Docker,	are	lightweight	ways	to	package
software	with	an	entire	file	system,	including	its	runtime	and	dependencies.	Because
of	this,	any	machine	(including	virtual	machines)	that	can	run	the	container	will	be
able	to	run	the	software	identically	to	any	other	machine	running	that	container.
Starting	up	TensorFlow	from	a	Docker	container	takes	a	few	more	steps	than	simply
activating	a	Virtualenv	or	Conda	environment,	but	its	consistency	across	runtime
environments	can	make	it	invaluable	when	deploying	code	across	multiple	instances
(either	on	virtual	machines	or	physical	servers).	We’ll	go	over	how	to	install	Docker
and	create	your	own	TensorFlow	containers	(as	well	as	how	to	use	the	official
TensorFlow	image)	below.

In	general,	we	recommend	using	either	Virtualenv	or	Conda’s	environments	when
installing	TensorFlow	for	use	on	a	single	computer.	They	solve	the	conflicting	dependency
issue	with	relatively	low	overhead,	are	simple	to	setup,	and	require	little	thought	once	they
are	created.	If	you	are	preparing	TensorFlow	code	to	be	deployed	on	one	or	more	servers,
it	may	be	worth	creating	a	Docker	container	image.	While	there	are	a	few	more	steps
involved,	that	cost	pays	itself	back	upon	deployment	across	many	servers.	We	do	not
recommend	installing	TensorFlow	without	using	either	an	environment	or	container.

https://www.continuum.io/why-anaconda
https://www.docker.com/


Jupyter	Notebook	and	Matplotlib

Two	excellent	pieces	of	software	that	are	frequently	incorporated	in	data	science
workflows	are	the	Jupyter	Notebook	and	matplotlib.	These	have	been	used	in	conjunction
with	NumPy	for	years,	and	TensorFlow’s	tight	integration	with	NumPy	allows	users	to
take	advantage	of	their	familiar	work	patterns.	Both	are	open	source	and	use	permissive
BSD	licenses.

The	Jupyter	Notebook	(formerly	the	iPython	Notebook)	allows	you	to	interactively
write	documents	that	include	code,	text,	outputs,	LaTeX,	and	other	visualizations.	This
makes	it	incredibly	useful	for	creating	reports	out	of	exploratory	analysis,	since	you	can
show	the	code	used	to	create	your	visualizations	right	next	to	your	charts.	You	can	also
include	Markdown	cells	provide	richly	formatted	text	to	share	your	insight	on	your
particular	approach.	Additionally,	the	Jupyter	Notebook	is	fantastic	for	prototyping	ideas,
as	you	can	go	back	and	edit	portions	of	your	code	and	run	it	directly	from	the	notebook.
Unlike	many	other	interactive	Python	environments	that	require	you	to	execute	code	line-
by-line,	the	Jupyter	Notebook	has	you	write	your	code	into	logical	chunks,	which	can
make	it	easier	to	debug	specific	portions	of	your	script.	In	TensorFlow,	this	is	particularly
useful,	since	a	typical	TensorFlow	program	is	already	split	into	“graph	definition”	and
“graph	running”	portions.

Matplotlib	is	a	charting	library	that	allows	you	to	create	dynamic,	custom	visualizations
in	Python.	It	integrates	seamlessly	with	NumPy,	and	its	graphs	can	be	displayed	directly
from	the	Jupyter	Notebook.	Matplotlib	can	also	be	used	to	display	numeric	data	as	images,
which	can	be	used	for	verifying	outputs	for	image	recognition	tasks	as	well	as	visualizing
internal	components	of	neural	networks.	Additional	layers	on	top	of	matplotlib,	such	as
Seaborn,	can	be	used	to	augment	its	capabilities.

http://jupyter.org/
http://matplotlib.org/
https://web.stanford.edu/~mwaskom/software/seaborn/


Creating	a	Virtualenv	environment

To	keep	our	dependencies	nice	and	clean,	we’re	going	to	be	using	virtualenv	to	create	a
virtual	Python	environment.	First,	we	need	to	make	sure	that	Virtualenv	is	installed	along
with	pip,	Python’s	package	manager.	Run	the	following	commands	(depending	on	which
operating	system	you	are	running):

Linux	64-bit
#	Python	2.7

$	sudo	apt-get	install	python-pip	python-dev	python-virtualenv

#	Python	3

$	sudo	apt-get	install	python3-pip	python3-dev	python3-virtualenv

Mac	OS	X
$	sudo	easy_install	pip

$	sudo	pip	install	--upgrade	virtualenv

Now	that	we’re	ready	to	roll,	let’s	create	a	directory	to	contain	this	environment,	as	well
as	any	future	environments	you	might	create	in	the	future:
$	sudo	mkdir	~/env

Next,	we’ll	create	the	environment	using	the	virtualenv	command.	In	this	example,	it	will
be	located	in	~/env/tensorflow.
$	virtualenv	--system-site-packages	~/env/tensorflow

Once	it	has	been	created,	we	can	activate	the	environment	using	the	source	command.
$	source	~/env/tensorflow/bin/activate

#	Notice	that	your	prompt	now	has	a	'(tensorflow)'	indicator

(tensorflow)$

We’ll	want	to	make	sure	that	the	environment	is	active	when	we	install	anything	with
pip,	as	that	is	how	Virtualenv	keeps	track	of	various	dependencies.

When	you’re	done	with	the	environment,	you	can	shut	it	off	just	by	using	the	deactivate
command:
(tensorflow)$	deactivate

Since	you’ll	be	using	the	virtual	environment	frequently,	it	will	be	useful	to	create	a
shortcut	for	activating	it	instead	of	having	to	write	out	the	entire	source…	command	each
time.	This	next	command	adds	a	bash	alias	to	your	~/.bashrc	file,	which	will	let	you
simply	type	tensorflow	whenever	you	want	to	start	up	the	environment:
$	sudo	printf	'\nalias	tensorflow="source	~/env/tensorflow/bin/activate"'	>>	~/.bashrc

To	test	it	out,	restart	your	bash	terminal	and	type	tensorflow:
$	tensorflow

#	The	prompt	should	change,	as	before

(tensorflow)$

https://virtualenv.pypa.io/en/stable/


Simple	installation	of	TensorFlow

If	you	just	want	to	get	on	to	the	tutorials	as	quickly	as	possible	and	don’t	care	about
GPU	support,	you	can	install	one	of	TensorFlow’s	official	pre-built	binaries.	Simply	make
sure	that	your	Virtualenv	environment	from	the	previous	section	is	active	and	run	the
following	command	corresponding	to	your	operating	system	and	version	of	Python:

Linux	64-bit	installation
#	Linux,	Python	2.7

(tensorflow)$	pip	install	--upgrade	https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.9.0-cp27-none-linux_x86_64.whl

#	Linux	64-bit,	Python	3.4

(tensorflow)$	pip3	install	--upgrade	https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.9.0-cp34-cp34m-linux_x86_64.whl

#	Linux	64-bit,	Python	3.5

(tensorflow)$	pip3	install	--upgrade	https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.9.0-cp35-cp35m-linux_x86_64.whl

Mac	OS	X	installation
#	Mac	OS	X,	Python	2.7:

(tensorflow)$	pip	install	--upgrade	https://storage.googleapis.com/tensorflow/mac/tensorflow-0.9.0-py2-none-any.whl

#	Mac	OS	X,	Python	3.4+

(tensorflow)$	pip3	install	--upgrade	https://storage.googleapis.com/tensorflow/mac/tensorflow-0.9.0-py3-none-any.whl

Technically,	there	are	pre-built	binaries	for	TensorFlow	with	GPU	support,	but	they	require	specific	versions	of
NVIDIA	software	and	are	incompatible	with	future	versions.



Example	installation	from	source:	64-bit	Ubuntu	Linux	with
GPU	support

If	you	want	to	use	TensorFlow	with	GPU(s)	support,	you	will	most	likely	have	to	build
from	source.	We’ve	included	a	reference	installation	example	that	goes	step-by-step
through	all	of	the	things	you’ll	need	to	do	to	get	TensorFlow	up	and	running.	Note	that
this	example	is	for	an	Ubuntu	Linux	64-bit	distribution,	so	you	may	have	to	change	certain
commands	(such	as	apt-get).	If	you’d	like	to	build	from	source	on	Mac	OS	X,	we
recommend	the	official	guide	on	the	TensorFlow	website:

https://www.tensorflow.org/versions/master/get_started/os_setup.html#installation-for-mac-os-x

https://www.tensorflow.org/versions/master/get_started/os_setup.html#installation-for-mac-os-x


Installing	dependencies

This	assumes	you’ve	already	installed	python-pip,	python-dev,	and	python-virtualenv	from	the	previous
section	on	installing	Virtualenv.

Building	TensorFlow	requires	a	few	more	dependencies,	though!	Run	the	following
commands,	depending	on	your	version	of	Python:

Python	2.7
$	sudo	apt-get	install	python-numpy	python-wheel	python-imaging	swig

Python	3
$	sudo	apt-get	install	python3-numpy	python3-wheel	python3-imaging	swig



Installing	Bazel
Bazel	is	an	open	source	build	tool	based	on	Google’s	internal	software,	Blaze.	As	of

writing,	TensorFlow	requires	Bazel	in	order	to	build	from	source,	so	we	must	install	it
ourselves.	The	Bazel	website	has	complete	installation	instructions,	but	we	include	the
basic	steps	here.

The	first	thing	to	do	is	ensure	that	Java	Development	Kit	8	is	installed	on	your	system.
The	following	commands	will	add	the	Oracle	JDK	8	repository	as	a	download	location	for
apt	and	then	install	it:
$	sudo	apt-get	install	software-properties-common

$	sudo	add-apt-repository	ppa:webupd8team/java

$	sudo	apt-get	update

$	sudo	apt-get	install	oracle-java8-installer

Ubuntu	versions	15.10	and	later	can	install	OpenJDK	8	instead	of	the	Oracle	JDK.	This	is	easier	and
recommended-	use	the	following	commands	instead	of	the	above	to	install	OpenJDK	on	your	system:
#	Ubuntu	15.10

$	sudo	apt-get	install	openjdk-8-jdk

#	Ubuntu	16.04

$	sudo	apt-get	install	default-jdk

Before	moving	on,	verify	that	Java	is	installed	correctly:
$	java	-version

#	Should	see	similar	output	as	below

java	version	"1.8.0_91"

Java(TM)	SE	Runtime	Environment	(build	1.8.0_91-b14)

Java	HotSpot(TM)	64-Bit	Server	VM	(build	25.91-b14,	mixed	mode)

Once	Java	is	setup,	there	are	a	few	more	dependencies	to	install:
$	sudo	apt-get	install	pkg-config	zip	g++	zlib1g-dev	unzip

Next,	you’ll	need	to	download	the	Bazel	installation	script.	To	do	so,	you	can	either	go
to	the	Bazel	releases	page	on	GitHub,	or	you	can	use	the	following	wget	command.	Note
that	for	Ubuntu,	you’ll	want	to	download	“bazel	—	installer-linux-x86_64.sh”:
#	Downloads	Bazel	0.3.0

$	wget	https://github.com/bazelbuild/bazel/releases/download/0.3.0/bazel-0.3.0-installer-linux-x86_64.sh

Finally,	we’ll	make	the	script	executable	and	run	it:
$	chmod	+x	bazel-<version>-installer-linux-x86_64.sh

$	./bazel-<version>-installer-linux-x86_64.sh	--user

By	using	the	--user	flag,	Bazel	is	installed	to	the	/bin	directory	for	the	user.	To	ensure	that	this	is
added	to	your	PATH,	run	the	following	to	update	your	/.bashrc:
$	sudo	printf	'\nexport	PATH="$PATH:$HOME/bin"'	>>	~/.bashrc

Restart	your	bash	terminal	and	run	bazel	to	make	sure	everything	is	working	properly:
$	bazel	version

#	You	should	see	some	output	like	the	following

Build	label:	0.3.0

Build	target:	...

...

Great!	Next	up,	we	need	to	get	the	proper	dependencies	for	GPU	support.

http://www.bazel.io/
http://www.bazel.io/docs/install.html
https://github.com/bazelbuild/bazel/releases


Installing	CUDA	Software	(NVIDIA	CUDA	GPUs	only)
If	you	have	an	NVIDIA	GPU	that	supports	CUDA,	you	can	install	TensorFlow	with

GPU	support.	There	is	a	list	of	CUDA-enabled	video	cards	available	here:

https://developer.nvidia.com/cuda-gpus

In	addition	to	making	sure	that	your	GPU	is	on	the	list,	make	a	note	of	the	“Compute
Capability”	number	associated	with	your	card.	For	example,	the	GeForce	GTX	1080	has	a
compute	capability	of	6.1,	and	the	GeForce	GTX	TITAN	X	has	a	compute	capability	of
5.2.	You’ll	need	this	number	for	when	you	compile	TensorFlow.	Once	you’ve	determined
that	you’re	able	to	take	advantage	of	CUDA,	the	first	thing	you’ll	want	to	do	is	sign	up	for
NVIDIA’s	“Accelerated	Computer	Developer	Program”.	This	is	required	to	download	all
of	the	files	necessary	to	install	CUDA	and	cuDNN.	The	link	to	do	so	is	here:

https://developer.nvidia.com/accelerated-computing-developer

Once	you’re	signed	up,	you’ll	want	to	download	CUDA.	Go	to	the	following	link	and
use	the	following	instructions:

https://developer.nvidia.com/cuda-downloads

1.	 Under	“Select	Target	Platform”,	choose	the	following	options:

Linux
x86_64
Ubuntu

http://www.nvidia.com/object/cuda_home_new.html
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/accelerated-computing-developer
https://developer.nvidia.com/cuda-downloads


14.04/15.04	(whichever	version	you	are	using)
deb	(local)

2.	 Click	the	“Download”	button	and	save	it	somewhere	on	your	computer.	This	file	is
large,	so	it	will	take	a	while.

3.	 Navigate	to	the	directory	containing	the	downloaded	file	and	run	the	following
commands:

$	sudo	dpkg	-i	cuda-repo-ubuntu1404-7-5-local_7.5-18_amd64.deb

$	sudo	apt-get	update

$	sudo	apt-get	install	cuda

This	will	install	CUDA	into	the	/usr/local/cuda	directory.

Next,	we	need	to	download	cuDNN,	which	is	a	separate	add-on	to	CUDA	designed	for
deep	neural	networks.	Click	the	“Download”	button	on	the	following	page:

https://developer.nvidia.com/cudnn

After	signing	in	with	the	account	you	created	above,	you’ll	be	taken	to	a	brief	survey.
Fill	that	out	and	you’ll	be	taken	to	the	download	page.	Click	“I	Agree	to	the	Terms…”	to
be	presented	with	the	different	download	options.	Because	we	installed	CUDA	7.5	above,
we’ll	want	to	download	cuDNN	for	CUDA	7.5	(as	of	writing,	we	are	using	cuDNN
version	5.0).

Click	“Download	cuDNN	v5	for	CUDA	7.5”	to	expand	a	bunch	of	download	options:

Click	“cuDNN	v5	Library	for	Linux”	to	download	the	zipped	cuDNN	files:

https://developer.nvidia.com/cudnn


Navigate	to	where	the	.tgz	file	was	downloaded	and	run	the	following	commands	to
place	the	correct	files	inside	the	/usr/local/cuda	directory:
$	tar	xvzf	cudnn-7.5-linux-x64-v5.0-ga.tgz

$	sudo	cp	cuda/include/cudnn.h	/usr/local/cuda/include

$	sudo	cp	cuda/lib64/libcudnn*	/usr/local/cuda/lib64

$	sudo	chmod	a+r	/usr/local/cuda/include/cudnn.h	/usr/local/cuda/lib64/libcudnn*

And	that’s	it	for	installing	CUDA!	With	all	of	the	dependencies	taken	care	of,	we	can
now	move	on	to	the	installation	of	TensorFlow	itself.



Building	and	Installing	TensorFlow	from	Source
First	things	first,	clone	the	Tensorflow	repository	from	GitHub	and	enter	the	directory:

$	git	clone	--recurse-submodules	https://github.com/tensorflow/tensorflow

$	cd	tensorflow

Once	inside,	we	need	to	run	the	./configure	script,	which	will	tell	Bazel	which	compiler
to	use,	which	version	of	CUDA	to	use,	etc.	Make	sure	that	you	have	the	“compute
capability”	number	(as	mentioned	previously)	for	your	GPU	card	available:
$	./configure

Please	specify	the	location	of	python.	[Default	is	/usr/bin/python]:	/usr/bin/python

#	NOTE:	For	Python	3,	specify	/usr/bin/python3	instead

Do	you	wish	to	build	TensorFlow	with	Google	Cloud	Platform	support?	[y/N]	N

Do	you	wish	to	build	TensorFlow	with	GPU	support?	[y/N]	y

Please	specify	which	gcc	nvcc	should	use	as	the	host	compiler.	[Default	is	/usr/bin/gcc]:	/usr/bin/gcc

Please	specify	the	Cuda	SDK	version	you	want	to	use,	e.g.	7.0.	[Leave	empty	to	use	system	default]:	7.5

Please	specify	the	Cudnn	version	you	want	to	use.	[Leave	empty	to	use	system	default]:	5.0.5

Please	specify	the	location	where	cuDNN	5.0.5	library	is	installed.	Refer	to	README.md	for	more	details.	

Please	specify	a	list	of	comma-separated	Cuda	compute	capabilities	you	want	to	build	with.

You	can	find	the	compute	capability	of	your	device	at:	https://developer.nvidia.com/cuda-gpus.

Please	note	that	each	additional	compute	capability	significantly	increases	your	build	time	and	binary	size.

[Default	is:	"3.5,5.2"]:	<YOUR-COMPUTE-CAPABILITY-NUMBER-HERE>

Setting	up	Cuda	include

Setting	up	Cuda	lib64

Setting	up	Cuda	bin

Setting	up	Cuda	nvvm

Setting	up	CUPTI	include

Setting	up	CUPTI	lib64

Configuration	finished

Google	Cloud	Platform	support	is	currently	in	a	closed	alpha.	If	you	have	access	to	the	program,	feel	free	to
answer	yes	to	the	Google	Cloud	Platform	support	question.

With	the	configuration	finished,	we	can	use	Bazel	to	create	an	executable	that	will
create	our	Python	binaries:
$	bazel	build	-c	opt	--config=cuda	//tensorflow/tools/pip_package:build_pip_package

This	will	take	a	fair	amount	of	time,	depending	on	how	powerful	your	computer	is.
Once	Bazel	is	done,	run	the	output	executable	and	pass	in	a	location	to	save	the	Python
wheel:
$	bazel-bin/tensorflow/tools/pip_package/build_pip_package	~/tensorflow/bin

This	creates	a	Python	.whl	file	inside	of	~/tensorflow/bin/.	Make	sure	that	your
“tensorflow”	Virtualentv	is	active,	and	install	the	wheel	with	pip!	(Note	that	the	exact
name	of	the	binary	will	differ	depending	on	which	version	of	TensorFlow	is	installed,
which	operating	system	you’re	using,	and	which	version	of	Python	you	installed	with):
$	tensorflow

(tensorflow)$	sudo	pip	install	~/tensorflow/bin/tensorflow-0.9.0-py2-none-any.whl

If	you	have	multiple	machines	with	similar	hardware,	you	can	use	this	wheel	to	quickly
install	TensorFlow	on	all	of	them.



You	should	be	good	to	go!	We’ll	finish	up	by	installing	the	Jupyter	Notebook	and
matplotlib.



Installing	Jupyter	Notebook:

First,	run	the	following	commands	to	install	iPython,	an	incredibly	useful	interactive
Python	kernel,	and	the	backbone	of	the	Jupyter	Notebook.	We	highly	recommend
installing	both	the	Python	2	and	Python	3	kernels	below,	as	it	will	give	you	more	options
moving	forward	(i.e.,	run	all	of	the	following!):
#	Python	2.7

$	sudo	python2	-m	pip	install	ipykernel

$	sudo	python2	-m	ipykernel	install

#	Python	3

$	sudo	python3	-m	pip	install	jupyterhub	notebook	ipykernel

$	sudo	python3	-m	ipykernel	install

After	that,	two	simple	commands	should	get	you	going.	First	install	the	build-essential
dependency:
$	sudo	apt-get	install	build-essential

Then	use	pip	to	install	the	Jupyter	Notebook	(pip3	if	you	are	using	Python	3):
#	For	Python	2.7

$	sudo	pip	install	jupyter

#	For	Python	3

$	sudo	pip3	install	jupyter

Official	installation	instructions	are	available	at	the	Jupyter	website:

http://jupyter.readthedocs.io/en/latest/install.html

https://ipython.org/
http://jupyter.readthedocs.io/en/latest/install.html


Installing	matplotlib

Installing	matplotlib	on	Linux/Ubuntu	is	easy.	Just	run	the	following:
#	Python	2.7

$	sudo	apt-get	build-dep	python-matplotlib	python-tk

#	Python	3

$	sudo	apt-get	build-dep	python3-matplotlib	python3-tk

And	that’s	it!



Testing	Out	TensorFlow,	Jupyter	Notebook,	and	matplotlib

Let’s	run	some	dummy	code	to	double	check	that	things	are	working	properly.	Create	a
new	directory	called	“tf-notebooks”	to	play	around	in.	Enter	that	directory	and	run	jupyter
notebook.	Again,	make	sure	that	the	“tensorflow”	environment	is	active:
(tensorflow)$	mkdir	tf-notebooks

(tensorflow)$	cd	tf-notebooks

(tensorflow)$	jupyter	notebook

This	will	start	up	a	Jupyter	Notebook	server	and	open	the	software	up	in	your	default
web	browser.	Assuming	you	don’t	have	any	files	in	your	tf-notebooks	directory,	you’ll	see
an	empty	workspace	with	the	message	“Notebook	list	is	empty”.	To	create	a	new
notebook,	click	the	“New”	button	in	the	upper	right	corner	of	the	page,	and	then	select
either	“Python	2”	or	“Python	3”,	depending	on	which	version	of	Python	you’ve	used	to
install	TensorFlow.

Your	new	notebook	will	open	up	automatically,	and	you’ll	be	presented	with	a	blank
slate	to	work	with.	Let’s	quickly	give	the	notebook	a	new	name.	At	the	top	of	the	screen,
click	the	word	“Untitled”:

This	will	pop	up	a	window	that	allows	you	to	rename	the	notebook.	This	also	changes



the	name	of	the	notebook	file	(with	the	extension	.ipynb).	You	can	call	this	whatever
you’d	like-	in	this	example	we’re	calling	it	“My	First	Notebook”

Now,	let’s	look	at	the	actual	interface.	You’ll	notice	an	empty	cell	with	the	block	In	[	]:
next	to	it.	You	can	type	Python	code	directly	into	this	cell,	and	it	can	include	multiple
lines.	Let’s	import	TensorFlow,	NumPy,	and	the	pyplot	module	of	matplotlib	into
notebook:
import	tensorflow	as	tf

import	numpy	as	np

import	matplotlib.pyplot	as	plt

In	order	to	run	the	cell,	simply	type	shift-enter,	which	will	run	your	code	and	create	a
new	cell	below.	You’ll	notice	the	indicator	to	the	left	now	reads	In	[1]:,	which	means	that
this	cell	was	the	first	block	of	code	to	run	in	the	kernel.	Fill	in	the	notebook	with	the
following	code,	using	as	many	or	as	few	cells	as	you	find	appropriate.	You	can	use	the
breaks	in	the	cells	to	naturally	group	related	code	together.
%matplotlib	inline

a	=	tf.random_normal([2,20])

sess	=	tf.Session()

out	=	sess.run(a)

x,	y	=	out

plt.scatter(x,	y)

plt.show()



This	line	is	special,	and	worth	mentioning	in	particular:
%matplotlib	inline

It	is	a	special	command	that	tells	the	notebook	to	display	matplotlib	charts	directly
inside	the	browser.

Let’s	go	over	what	the	rest	of	the	code	does,	line-by-line.	Don’t	worry	if	you	don’t
understand	some	of	the	terminology,	as	we’ll	be	covering	it	in	the	book:

1.	 Use	TensorFlow	to	define	a	2x20	matrix	of	random	numbers	and	assign	it	to	the
variable	a

2.	 Start	a	TensorFlow	Session	and	assign	it	to	sess
3.	 Execute	a	with	the	sess.run()	method,	and	assign	the	output	(which	is	a	NumPy	array)

to	out
4.	 Split	up	the	2x20	matrix	into	two	1x10	vectors,	x	and	y
5.	 Use	pyplot	to	create	a	scatter	plot	with	x	and	y

Assuming	everything	is	installed	correctly,	you	should	get	an	output	similar	to	the
above!	It’s	a	small	first	step,	but	hopefully	it	feels	good	to	get	the	ball	rolling.

For	a	more	thorough	tutorial	on	the	ins-and-outs	of	the	Jupyter	Notebook,	check	out	the
examples	page	here:

http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/examples_index.html

http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/examples_index.html


Conclusion

Voila!	You	should	have	a	working	version	of	TensorFlow	ready	to	go.	In	the	next
chapter,	you’ll	learn	fundamental	TensorFlow	concepts	and	build	your	first	models	in	the
library.	If	you	had	any	issues	installing	TensorFlow	on	your	system,	the	official
installation	guide	should	be	the	first	place	to	look:

https://www.tensorflow.org/versions/master/get_started/os_setup.html

https://www.tensorflow.org/versions/master/get_started/os_setup.html


Part	II.	TensorFlow	and	Machine	Learning
fundamentals





Chapter	3.	TensorFlow	Fundamentals



Introduction	to	Computation	Graphs

This	section	covers	the	basics	of	computation	graphs	without	the	context	of	TensorFlow.	This	includes
defining	nodes,	edges,	and	dependencies,	and	we	also	provide	several	examples	to	illustrate	key	principles.	If
you	are	experienced	and/or	comfortable	with	computation	graphs,	you	may	skip	to	the	next	section.



Graph	basics
At	the	core	of	every	TensorFlow	program	is	the	computation	graph	described	in	code

with	the	TensorFlow	API.	A	computation	graph,	is	a	specific	type	of	directed	graph	that	is
used	for	defining,	unsurprisingly,	computational	structure.	In	TensorFlow	it	is,	in	essence,
a	series	of	functions	chained	together,	each	passing	its	output	to	zero,	one,	or	more
functions	further	along	in	the	chain.	In	this	way,	a	user	can	construct	a	complex
transformation	on	data	by	using	blocks	of	smaller,	well-understood	mathematical
functions.	Let’s	take	a	look	at	a	bare-bones	example.



In	the	above	example,	we	see	the	graph	for	basic	addition.	The	function,	represented	by
a	circle,	takes	in	two	inputs,	represented	as	arrows	pointing	into	the	function.	It	outputs	the
result	of	adding	1	and	2	together:	3,	which	is	shown	as	an	arrow	pointing	out	of	the
function.	The	result	could	then	be	passed	along	to	another	function,	or	it	might	simply	be
returned	to	the	client.

We	can	also	look	at	this	graph	as	a	simple	equation:

The	above	illustrates	how	the	two	fundamental	building	blocks	of	graphs,	nodes	and
edges,	are	used	when	constructing	a	computation	graph.	Let’s	go	over	their	properties:

Nodes,	typically	drawn	as	circles,	ovals,	or	boxes,	represent	some	sort	of
computation	or	action	being	done	on	or	with	data	in	the	graph’s	context.	In	the	above
example,	the	operation	“add”	is	the	sole	node.
Edges	are	the	actual	values	that	get	passed	to	and	from	Operations,	and	are	typically
drawn	as	arrows.	In	the	“add”	example,	the	inputs	1	and	2	are	both	edges	leading	into
the	node,	while	the	output	3	is	an	edge	leading	out	of	the	node.	Conceptually,	we	can
think	of	edges	as	the	link	between	different	Operations	as	they	carry	information
from	one	node	to	the	next.

Now,	here’s	a	slightly	more	interesting	example:



There’s	a	bit	more	going	on	in	this	graph!	The	data	is	traveling	from	left	to	right	(as
indicated	by	the	direction	of	the	arrows),	so	let’s	break	down	the	graph,	starting	from	the
left.

1.	 At	the	very	beginning,	we	can	see	two	values	flowing	into	the	graph,	5	and	3.	They
may	be	coming	from	a	different	graph,	being	read	in	from	a	file,	or	entered	directly
by	the	client.

2.	 Each	of	these	initial	values	is	passed	to	one	of	two	explicit	“input”	nodes,	labeled	a
and	b	in	the	graphic.	The	“input”	nodes	simply	pass	on	values	given	to	them-	node	a
receives	the	value	5	and	outputs	that	same	number	to	nodes	c	and	d,	while	node	b
performs	the	same	action	with	the	value	3.

3.	 Node	c	is	a	multiplication	operation.	It	takes	in	the	values	5	and	3	from	nodes	a	and	b,
respectively,	and	outputs	its	result	of	15	to	node	e.	Meanwhile,	node	d	performs
addition	with	the	same	input	values	and	passes	the	computed	value	of	8	along	to	node
e.

4.	 Finally,	node	e,	the	final	node	in	our	graph,	is	another	“add”	node.	It	receives	the
values	of	15	and	8,	adds	them	together,	and	spits	out	23	as	the	final	result	of	our
graph.

Here’s	how	the	above	graphical	representation	might	look	as	a	series	of	equations:

If	we	wanted	to	solve	 	for	 	and	 ,	we	can	just	work	backwards	from	
and	plug	in!



With	that,	the	computation	is	complete!	There	are	concepts	worth	pointing	out	here:

The	pattern	of	using	“input”	nodes	is	useful,	as	it	allows	us	to	relay	a	single	input
value	to	a	huge	amount	of	future	nodes.	If	we	didn’t	do	this,	the	client	(or	whoever
passed	in	the	initial	values)	would	have	to	explicitly	pass	each	input	value	to	multiple
nodes	in	our	graph.	This	way,	the	client	only	has	to	worry	about	passing	in	the
appropriate	values	once	and	any	repeated	use	of	those	inputs	is	abstracted	away.
We’ll	touch	a	little	more	on	abstracting	graphs	shortly.
Pop	quiz:	which	node	will	run	first-	the	multiplication	node	c,	or	the	addition	node	d?
The	answer:	you	can’t	tell.	From	just	this	graph,	it’s	impossible	to	know	which	of	c
and	d	will	execute	first.	Some	might	read	the	graph	from	left-to-right	and	top-to-
bottom	and	simply	assume	that	node	c	would	run	first,	but	it’s	important	to	note	that
the	graph	could	have	easily	been	drawn	with	d	on	top	of	c.	Others	may	think	of	these
nodes	as	running	concurrently,	but	that	may	not	always	be	the	case,	due	to	various
implementation	details	or	hardware	limitations.	In	reality,	it’s	best	to	think	of	them	as
running	independently	of	one	another.	Because	node	c	doesn’t	rely	on	any
information	from	node	d,	it	doesn’t	have	to	wait	for	node	d	to	do	anything	in	order	to
complete	its	operation.	The	converse	is	also	true:	node	d	doesn’t	need	any
information	from	node	c.	We’ll	talk	more	about	dependency	later	in	this	chapter.

Next,	here’s	a	slightly	modified	version	of	the	graph:

There	are	two	main	changes	here:

1.	 The	“input”	value	3	from	node	b	is	now	being	passed	on	to	node	e.
2.	 The	function	“add”	in	node	e	has	been	replaced	with	“sum”,	to	indicate	that	it	adds



more	than	two	numbers.

Notice	how	we	are	able	to	add	an	edge	between	nodes	that	appear	to	have	other	nodes
“in	the	way.”	In	general,	any	node	can	pass	its	output	to	any	future	node	in	the	graph,	no
matter	how	many	computations	take	place	in	between.	The	graph	could	have	looked	like
the	following,	and	still	be	perfectly	valid:

With	both	of	these	graphs,	we	can	begin	to	see	the	benefit	of	abstracting	the	graph’s
input.	We	were	able	to	manipulate	the	precise	details	of	what’s	going	on	inside	of	our
graph,	but	the	client	only	has	to	know	to	send	information	to	the	same	two	input	nodes.
We	can	extend	this	abstraction	even	further,	and	can	draw	our	graph	like	this:

By	doing	this	we	can	think	of	entire	sequences	of	nodes	as	discrete	building	blocks	with
a	set	input	and	output.	It	can	be	easier	to	visualize	chaining	together	groups	of
computations	instead	of	having	to	worry	about	the	specific	details	of	each	piece.



Dependencies
There	are	certain	types	of	connections	between	nodes	that	aren’t	allowed,	the	most

common	of	which	is	one	that	creates	an	unresolved	circular	dependency.	In	order	to
explain	a	circular	dependency,	we’re	going	to	illustrate	what	a	dependency	is.	Let’s	take	a
look	at	this	graph	again:

The	concept	of	a	dependency	is	straight-forward:	any	node,	A,	that	is	required	for	the
computation	of	a	later	node,	B,	is	said	to	be	a	dependency	of	B.	If	a	node	A	and	node	B	do
not	need	any	information	from	one	another,	they	are	said	to	be	independent.	To	visually
represent	this,	let’s	take	a	look	at	what	happens	if	the	multiplication	node	c	is	unable	to
finish	its	computation	(for	whatever	reason):

Predictably,	since	node	e	requires	the	output	from	node	c,	it	is	unable	to	perform	its
calculation	and	waits	indefinitely	for	node	c’s	data	to	arrive.	It’s	pretty	easy	to	see	that
nodes	c	and	d	are	dependencies	of	node	e,	as	they	feed	information	directly	into	the	final
addition	function.	However,	it	may	be	slightly	less	obvious	to	see	that	the	inputs	a	and	b
are	also	dependencies	of	e.	What	happens	if	one	of	the	inputs	fails	to	pass	its	data	on	to	the
next	functions	in	the	graph?



As	you	can	see,	removing	one	of	the	inputs	halts	most	of	the	computation	from	actually
occurring,	and	this	demonstrates	the	transitivity	of	dependencies.	That	is	to	say,	if	A	is
dependent	on	B,	and	B	is	dependent	on	C,	then	A	is	dependent	on	C.	In	this	case,	the	final
node	e	is	dependent	on	nodes	c	and	d,	and	the	nodes	c	and	d	are	both	dependent	on	input
node	b.	Therefore,	the	final	node	e	is	dependent	on	the	input	node	b.	We	can	make	the	same
reasoning	for	node	e	being	dependent	on	node	a,	as	well.	Additionally,	we	can	make	a
distinction	between	the	different	dependencies	e	has:

1.	 We	can	say	that	e	is	directly	dependent	on	nodes	c	and	d.	By	this,	we	mean	that	data
must	come	directly	from	both	node	c	and	d	in	order	for	node	e	to	execute.

2.	 We	can	say	that	e	is	indirectly	dependent	on	nodes	a	and	b.	This	means	that	the
outputs	of	a	and	b	do	not	feed	directly	into	node	e.	Instead,	their	values	are	fed	into	an
intermediary	node(s)	which	is	also	a	dependency	of	e,	which	can	either	be	a	direct
dependency	or	indirect	dependency.	This	means	that	a	node	can	be	indirectly
dependent	on	a	node	with	many	layers	of	intermediaries	in-between	(and	each	of
those	intermediaries	is	also	a	dependency).

Finally,	let’s	see	what	happens	if	we	redirect	the	output	of	a	graph	back	into	an	earlier
portion	of	it:



Well,	unfortunately	it	looks	like	that	isn’t	going	to	fly.	We	are	now	attempting	to	pass
the	output	of	node	e	back	into	node	b	and,	hopefully,	have	the	graph	cycle	through	its
computations.	The	problem	here	is	that	node	b	now	has	node	e	as	a	direct	dependency,
while	at	the	same	time,	node	e	is	dependent	on	node	b	(as	we	showed	previously).	The
result	of	this	is	that	neither	b	nor	e	can	execute,	as	they	are	both	waiting	for	the	other	node
to	complete	its	computation.

Perhaps	you	are	clever	and	decide	that	we	could	provide	some	initial	state	to	the	value
feeding	into	either	b	or	e.	It	is	our	graph,	after	all.	Let’s	give	the	graph	a	kick-start	by
giving	the	output	of	e	an	initial	value	of	1:

Here’s	what	the	first	few	loops	through	the	graph	look	like.	It	creates	an	endless
feedback	loop,	and	most	of	the	edges	in	the	graph	tend	towards	infinity.	Neat!	However,
for	software	like	TensorFlow,	these	sorts	of	infinite	loops	are	bad	for	a	number	of	reasons:

1.	 Because	it’s	an	infinite	loop,	the	termination	of	the	program	isn’t	going	to	be
graceful.

2.	 The	number	of	dependencies	becomes	infinite,	as	each	subsequent	iteration	is
dependent	on	all	previous	iterations.	Unfortunately,	each	node	does	not	count	as	a
single	dependency-	each	time	its	output	changes	values	it	is	counted	again.	This
makes	it	impossible	to	keep	track	of	dependency	information,	which	is	critical	for	a
number	of	reasons	(see	the	end	of	this	section).

3.	 Frequently	you	end	up	in	situations	like	this	scenario,	where	the	values	being	passed
on	either	explode	into	huge	positive	numbers	(where	they	will	eventually	overflow),
huge	negative	numbers	(where	you	will	eventually	underflow),	or	become	close	to
zero	(at	which	point	each	iteration	has	little	additional	meaning).

Because	of	this,	truly	circular	dependencies	can’t	be	expressed	in	TensorFlow,	which	is
not	a	bad	thing.	In	practical	use,	we	simulate	these	sorts	of	dependencies	by	copying	a
finite	number	of	versions	of	the	graph,	placing	them	side-by-side,	and	feeding	them	into
one	another	in	sequence.	This	process	is	commonly	referred	to	as	“unrolling”	the	graph,
and	will	be	touched	on	more	in	the	chapter	on	recurrent	neural	networks.	To	visualize
what	this	unrolling	looks	like	graphically,	here’s	what	the	graph	would	look	like	after



we’ve	unrolled	this	circular	dependency	5	times:

If	you	analyze	this	graph,	you’ll	discover	that	this	sequence	of	nodes	and	edges	is
identical	to	looping	through	the	previous	graph	5	times.	Note	how	the	original	input	values
(represented	by	the	arrows	skipping	along	the	top	and	bottom	of	the	graph)	get	passed
onto	each	copy	as	they	are	needed	for	each	copied	“iteration”	through	the	graph.	By
unrolling	our	graph	like	this,	we	can	simulate	useful	cyclical	dependencies	while
maintaining	a	deterministic	computation.

Now	that	we	understand	dependencies,	we	can	talk	about	why	it’s	useful	to	keep	track
of	them.	Imagine	for	a	moment,	that	we	only	wanted	to	get	the	output	of	node	c	from	the
previous	example	(the	multiplication	node).	We’ve	already	defined	the	entire	graph,
including	node	d,	which	is	independent	of	c,	and	node	e,	which	occurs	after	c	in	the	graph.
Would	we	have	to	calculate	the	entire	graph,	even	though	we	don’t	need	the	values	of	d
and	e?	No!	Just	by	looking	at	the	graph,	you	can	see	that	it	would	be	a	waste	of	time	to
calculate	all	of	the	nodes	if	we	only	want	the	output	from	c.	The	question	is:	how	do	we
make	sure	our	computer	only	computes	the	necessary	nodes	without	having	to	tell	it	by
hand?	The	answer:	use	our	dependencies!

The	concept	behind	this	is	fairly	simple,	and	the	only	thing	we	have	to	ensure	is	that
each	node	has	a	list	of	the	nodes	it	directly	(not	indirectly)	depends	on.	We	start	with	an
empty	stack,	which	will	eventually	hold	all	of	the	nodes	we	want	to	run.	Start	with	the
node(s)	that	you	want	to	get	the	output	from.	Obviously	it	must	execute,	so	we	add	it	to
our	stack.	We	look	at	our	output	node’s	list	of	dependencies-	which	means	that	those
nodes	must	run	in	order	to	calculate	our	output,	so	we	add	all	of	them	to	the	stack.	Now
we	look	at	all	of	those	nodes	and	see	what	their	direct	dependencies	are	and	add	those	to
the	stack.	We	continue	this	pattern	all	the	way	back	in	the	graph	until	there	are	no
dependencies	left	to	run,	and	in	this	way	we	guarantee	that	we	have	all	of	the	nodes	we
need	to	run	the	graph,	and	only	those	nodes.	In	addition,	the	stack	will	be	ordered	in	a	way
that	we	are	guaranteed	to	be	able	to	run	each	node	in	the	stack	as	we	iterate	through	it.	The
main	thing	to	look	out	for	is	to	keep	track	of	nodes	that	were	already	calculated	and	to
store	their	value	in	memory-	that	way	we	don’t	calculate	the	same	node	over	and	over
again.	By	doing	this,	we	are	able	to	make	sure	our	computation	is	as	lean	as	possible,
which	can	save	hours	of	processing	time	on	huge	graphs.



Defining	Computation	Graphs	in	TensorFlow

In	this	book,	you’re	going	to	be	exposed	to	diverse	and	fairly	complex	machine	learning
models.	However,	the	process	of	defining	each	of	them	in	TensorFlow	follows	a	similar
pattern.	As	you	dive	into	various	math	concepts	and	learn	how	to	implement	them,
understanding	the	core	TensorFlow	work	pattern	will	keep	yourself	grounded.	Luckily,
this	workflow	is	simple	to	remember-	it’s	only	two	steps:

1.	 Define	the	computation	graph
2.	 Run	the	graph	(with	data)

This	seems	obvious-	you	can’t	run	a	graph	if	it	doesn’t	exist	yet!	But	it’s	an	important
distinction	to	make	as	the	sheer	volume	of	functionality	in	TensorFlow	can	be
overwhelming	when	writing	your	own	code.	By	worrying	about	only	one	portion	of	this
workflow	at	a	time,	it	can	help	you	structure	your	code	more	thoughtfully	as	well	as	aide
in	pointing	you	towards	the	next	thing	to	work	on.

This	section	will	focus	on	the	basics	of	defining	graphs	in	TensorFlow,	and	the	next
section	will	go	over	running	a	graph	once	its	created.	At	the	end,	we’ll	tie	the	two
together,	and	show	how	we	can	create	graphs	that	change	over	multiple	runs	and	take	in
different	data.



Building	your	first	TensorFlow	graph
We	became	pretty	familiar	with	the	following	graph	in	the	last	section:

Here’s	what	it	looks	like	in	TensorFlow	code:
import	tensorflow	as	tf

a	=	tf.constant(5,	name="input_a")

b	=	tf.constant(3,	name="input_b")

c	=	tf.mul(a,b,	name="mul_c")

d	=	tf.add(a,b,	name="add_d")

e	=	tf.add(c,d,	name="add_e")

Let’s	break	this	code	down	line	by	line.	First,	you’ll	notice	this	import	statement:
import	tensorflow	as	tf

This,	unsurprisingly,	imports	the	TensorFlow	library	and	gives	it	an	alias	of	tf.	This	is
by	convention,	as	it’s	much	easer	to	type	“tf,”	rather	than	“tensorflow”	over	and	over	as
we	use	its	various	functions!

Next,	let’s	focus	on	our	first	two	variable	assignments:
a	=	tf.constant(5,	name="input_a")

b	=	tf.constant(3,	name="input_b")

Here,	we’re	defining	our	“input”	nodes,	a	and	b.	These	lines	use	our	first	TensorFlow
Operation:	tf.constant().	In	TensorFlow,	any	computation	node	in	the	graph	is	called	an
Operation,	or	Op	for	short.	Ops	take	in	zero	or	more	Tensor	objects	as	input	and	output
zero	or	more	Tensor	objects.	To	create	an	Operation,	you	call	its	associated	Python
constructor-	in	this	case,	tf.constant()	creates	a	“constant”	Op.	It	takes	in	a	single	tensor
value,	and	outputs	that	same	value	to	nodes	that	are	directly	connected	to	it.	For
convenience,	the	function	automatically	converts	the	scalar	numbers	5	and	3	into	Tensor
objects	for	us.	We	also	pass	in	an	optional	string	name	parameter,	which	we	can	use	to	give
an	identifier	to	the	nodes	we	create.

Don’t	worry	if	you	don’t	fully	understand	what	an	Operation	or	Tensor	object	are	at	this	time,	since	we’ll	be
going	into	more	detail	later	in	this	chapter.

c	=	tf.mul(a,b,	name="mul_c")

d	=	tf.add(a,b,	name="add_d")

https://www.tensorflow.org/versions/master/api_docs/python/constant_op.html#constant
https://www.tensorflow.org/versions/master/api_docs/python/constant_op.html#constant


Here,	we	are	defining	the	next	two	nodes	in	our	graph,	and	they	both	use	the	nodes	we
defined	previously.	Node	c	uses	the	tf.mul.	Op,	which	takes	in	two	inputs	and	outputs	the
result	of	multiplying	them	together.	Similarly,	node	d	uses	tf.add,	an	Operation	that	outputs
the	result	of	adding	two	inputs	together.	We	again	pass	in	a	name	to	both	of	these	Ops	(it’s
something	you’ll	be	seeing	a	lot	of).	Notice	that	we	don’t	have	to	define	the	edges	of	the
graph	separately	from	the	node-	when	you	create	a	node	in	TensorFlow,	you	include	all	of
the	inputs	that	the	Operation	needs	to	compute,	and	the	software	draws	the	connections	for
you.
e	=	tf.add(c,d,	name="add_e")

This	last	line	defines	the	final	node	in	our	graph.	e	uses	tf.add	in	a	similar	fashion	to
node	d.	However,	this	time	it	takes	nodes	c	and	d	as	input-	exactly	as	its	described	in	the
graph	above.

With	that,	our	first,	albeit	small,	graph	has	been	fully	defined!	If	you	were	to	execute
the	above	in	a	Python	script	or	shell,	it	would	run,	but	it	wouldn’t	actually	do	anything.
Remember-	this	is	just	the	definition	part	of	the	process.	To	get	a	brief	taste	of	what
running	a	graph	looks	like,	we	could	add	the	following	two	lines	at	the	end	to	get	our
graph	to	output	the	final	node:
sess	=	tf.Session()

sess.run(e)

If	you	ran	this	in	an	interactive	environment,	such	as	the	python	shell	or	the
Jupyter/iPython	Notebook,	you	would	see	the	correct	output:
...

>>>	sess	=	tf.Session()

>>>	sess.run(e)

23

That’s	enough	talk	for	now:	let’s	actually	get	this	running	in	live	code!

Exercise:	Building	a	Basic	Graph	in	TensorFlow
It’s	time	to	do	it	live!	In	this	exercise,	you’ll	code	your	first	TensorFlow	graph,	run	various	parts	of	it,	and	get
your	first	exposure	to	the	incredibly	useful	tool	TensorBoard.	When	you	finish	this,	you	should	feel	comfortable
experimenting	with	and	building	basic	TensorFlow	graphs.

Now,	let’s	actually	define	it	in	TensorFlow!	Make	sure	you	have	TensorFlow	installed,	and	start	up	your	Python
dependency	environment	(Virtualenv,	Conda,	Docker)	if	you’re	using	one.	In	addition,	if	you	installed
TensorFlow	from	source,	make	sure	that	your	console’s	present	working	directory	is	not	the	TensorFlow	source
folder,	otherwise	Python	will	get	confused	when	we	import	the	library.	Now,	start	an	interactive	Python	session,
either	using	the	Jupyter	Notebook	with	the	shell	command	jupyter	notebook,	or	start	a	simple	Python	shell	with
python.	If	you	have	another	preferred	way	of	writing	Python	interactively,	feel	free	to	use	that!

You	could	write	this	as	a	Python	file	and	run	it	non-interactively,	but	the	output	of	running	a	graph	is
not	displayed	by	default	when	doing	so.	For	the	sake	of	seeing	the	result	of	your	graph,	getting
immediate	feedback	on	your	syntax,	and	(in	the	case	of	the	Jupyter	Notebook)	the	ability	to	fix	errors
and	change	code	on	the	fly,	we	highly	recommend	doing	these	examples	in	an	interactive	environment.
Plus,	interactive	TensorFlow	is	fun!

https://www.tensorflow.org/versions/master/api_docs/python/math_ops.html#mul
https://www.tensorflow.org/versions/master/api_docs/python/math_ops.html#add
https://www.tensorflow.org/versions/master/api_docs/python/math_ops.html#add


First,	we	need	to	load	up	the	TensorFlow	library.	Write	out	your	import	statement	as	follows:

import	tensorflow	as	tf

It	may	think	for	a	few	seconds,	but	afterward	it	will	finish	importing	and	will	be	ready	for	the	next	line	of	code.	If
you	installed	TensorFlow	with	GPU	support,	you	may	see	some	output	notifying	you	that	CUDA	libraries	were
imported.	If	you	get	an	error	that	looks	like	this:

ImportError:	cannot	import	name	pywrap_tensorflow

Make	sure	that	you	didn’t	launch	your	interactive	environment	from	the	TensorFlow	source	folder.	If	you	get	an
error	that	looks	like	this:

ImportError:	No	module	named	tensorflow

Double	check	that	TensorFlow	is	installed	properly.	If	you	are	using	Virtualenv	or	Conda,	ensure	that	your
TensorFlow	environment	it	is	active	when	you	start	your	interactive	Python	software.	Note	that	if	you	have
multiple	terminals	running,	one	terminal	may	have	an	environment	active	while	the	other	does	not.

Assuming	the	import	worked	without	any	hiccups,	we	can	move	on	to	the	next	portion	of	the	code:

a	=	tf.constant(5,	name="input_a")

b	=	tf.constant(3,	name="input_b")

This	is	the	same	code	that	we	saw	above-	feel	free	to	change	the	values	or	name	parameters	of	these	constants.	In
this	book,	we’ll	stick	to	the	same	values	we	had	for	the	sake	of	consistency.

c	=	tf.mul(a,b,	name="mul_c")

d	=	tf.add(a,b,	name="add_d")

Next	up,	we	have	the	first	Ops	in	our	code	that	actually	perform	a	mathematical	function.	If	you’re	sick	and	tired
of	tf.mul	and	tf.add,	feel	free	to	swap	in	tf.sub,	tf.div,	or	tf.mod,	which	perform	subtraction,	division,	or
modulo	operations,	respectively.

tf.div	performs	either	integer	division	or	floating	point	division	depending	on	the	type	of	input
provided.	If	you	want	to	ensure	floating	point	division,	try	out	tf.truediv!

Then	we	can	add	in	our	final	node:

e	=	tf.add(c,d,	name="add_e")

You	probably	noticed	that	there	hasn’t	been	any	output	when	calling	these	Operations.	That’s	because	they	have
been	simply	adding	Ops	to	a	graph	behind	the	scenes,	but	no	computation	is	actually	taking	place.	In	order	to	run
the	graph,	we’re	going	to	need	a	TensorFlow	Session:

sess	=	tf.Session()

Session	objects	are	in	charge	of	supervising	graphs	as	they	run,	and	are	the	primary	interface	for	running	graphs.
We’re	going	to	discuss	Session	objects	in	depth	after	this	exercise,	but	for	now	just	know	that	in	TensorFlow	you
need	a	Session	if	you	want	to	run	your	code!	We	assign	our	Session	to	the	variable	sess	so	we	can	access	it
later.

On	InteractiveSession:	There	is	a	slight	variation	on	tf.Session	called	tf.InteractiveSession.
It’s	actually	designed	for	use	in	interactive	Python	software,	such	as	those	you	may	be	using,	and	it
makes	a	few	alternative	ways	of	running	code	a	little	simpler.	The	downsides	are	that	it’s	less	useful	for
writing	TensorFlow	in	a	Python	file,	and	that	it	abstracts	away	information	that	you	should	learn	as	a
new	user	to	TensorFlow.	Besides,	in	the	end	it	doesn’t	save	that	many	keystrokes.	In	this	book,	we’ll
stick	to	the	standard	tf.Session

sess.run(e)

Here’s	where	we	finally	can	see	the	result!	After	running	this	code,	you	should	see	the	output	of	your	graph.	In
our	example	graph,	the	output	was	23,	but	it	will	be	different	depending	the	exact	functions	and	inputs	you	used.

https://www.tensorflow.org/versions/master/api_docs/python/math_ops.html#mul
https://www.tensorflow.org/versions/master/api_docs/python/math_ops.html#add
https://www.tensorflow.org/versions/master/api_docs/python/math_ops.html#sub
https://www.tensorflow.org/versions/master/api_docs/python/math_ops.html#div
https://www.tensorflow.org/versions/master/api_docs/python/math_ops.html#mod
https://www.tensorflow.org/versions/master/api_docs/python/math_ops.html#div
https://www.tensorflow.org/versions/master/api_docs/python/math_ops.html#truediv


That’s	not	all	we	can	do	however.	Let’s	try	plugging	in	one	of	the	other	nodes	in	our	graph	to	sess.run():

sess.run(c)

You	should	see	the	intermediary	value	of	c	as	the	output	of	this	call	(15,	in	the	example	code).	TensorFlow
doesn’t	make	any	assumptions	about	graphs	you	create,	and	for	all	the	program	cares	node	c	could	be	the	output
you	want!	In	fact,	you	can	use	the	run()	on	any	Operation	in	your	graph.	When	you	pass	an	Op	into	sess.run(),
what	you	are	essentially	saying	to	TensorFlow	is,	“Here	is	a	node	I	would	like	to	output.	Please	run	all	operations
necessary	to	calculate	that	node”.	Play	around	and	try	outputting	some	of	the	other	nodes	in	your	graph!

You	can	also	save	the	output	from	running	the	graph-	let’s	save	the	output	from	node	e	to	a	Python	variable	called
output:

output	=	sess.run(e)

Great!	Now	that	we	have	a	Session	active	and	our	graph	defined,	let’s	visualize	it	to	confirm	that	it’s	structured
the	same	way	we	drew	it	out.	To	do	that,	we’re	going	to	use	TensorBoard,	which	came	installed	with
TensorFlow.	To	take	advantage	of	TensorBoard,	we’re	just	going	to	add	one	line	to	our	code:

writer	=	tf.train.SummaryWriter('./my_graph',	sess.graph)

Let’s	break	down	what	this	code	does.	We	are	creating	a	TensorFlow	SummaryWriter	object,	and	assigning	it	to
the	variable	writer.	In	this	exercise,	we	won’t	be	performing	any	additional	actions	with	the	SummaryWriter,	but
in	the	future	we’ll	be	using	them	to	save	data	and	summary	statistics	from	our	graphs,	so	we	assign	it	to	a	variable
to	get	in	the	habit.	We	pass	in	two	parameters	to	initialize	SummaryWriter.	The	first	is	a	string	output	directory,
which	is	where	the	graph	description	will	be	stored	on	disk.	In	this	case,	the	files	created	will	be	put	in	a	directory
called	my_graph,	and	will	be	located	inside	the	directory	we	are	running	our	Python	code.	The	second	input	we
pass	into	SummaryWriter	is	the	graph	attribute	of	our	Session.	tf.Session	objects,	as	managers	of	graphs
defined	in	TensorFlow,	have	a	graph	attribute	that	is	a	reference	to	the	graph	they	are	keeping	track	of.	By
passing	this	on	to	SummaryWriter,	the	writer	will	output	a	description	of	the	graph	inside	the	“my_graph”
directory.	SummaryWriter	objects	write	this	data	immediately	upon	initialization,	so	once	you	have	executed	this
line	of	code,	we	can	start	up	TensorBoard.

Go	to	your	terminal	and	type	in	the	following	command,	making	sure	that	your	present	working	directory	is	the
same	as	where	you	ran	your	Python	code	(you	should	see	the	“my_graph”	directory	listed):

$	tensorboard	--logdir="my_graph"

You	should	see	some	log	info	print	to	the	console,	and	then	the	message	“Starting	TensorBoard	on	port	6006”.
What	you’ve	done	is	start	up	a	TensorBoard	server	that	is	using	data	from	the	“my_graph”	directory.	By	default,
the	server	started	on	port	6006-	to	access	TensorBoard,	open	up	a	browser	and	type	http://localhost:6006.
You’ll	be	greeting	with	an	orange-and-white-themed	screen:

https://www.tensorflow.org/versions/master/api_docs/python/train.html#SummaryWriter


Don’t	be	alarmed	by	the	“No	scalar	data	was	found”	warning	message.	That	just	means	that	we	didn’t	save	out
any	summary	statistics	for	TensorBoard	to	display-	normally,	this	screen	would	show	us	information	that	we
asked	TensorFlow	to	save	using	our	SummaryWriter.	Since	we	didn’t	write	any	additional	stats,	there’s	nothing	to
display.	That’s	fine,	though,	as	we’re	here	to	admire	our	beautiful	graph.	Click	on	the	“Graphs”	link	at	the	top	of
the	page,	and	you	should	see	a	screen	similar	to	this:

That’s	more	like	it!	If	your	graph	is	too	small,	you	can	zoom	in	on	TensorBoard	by	scrolling	your	mousewheel
up.	You	can	see	how	each	of	the	nodes	is	labeled	based	on	the	name	parameter	we	passed	into	each	Operation.	If
you	click	on	the	nodes,	you	can	get	information	about	them	such	as	which	other	nodes	they	are	attached	to.	You’ll
notice	that	the	“inputs”,	a	and	b	appear	to	be	duplicated,	but	if	you	hover	or	click	on	either	of	the	nodes	labeled
“input_a”,	you	should	see	that	they	both	get	a	highlighted	together.	This	graph	doesn’t	look	exactly	like	the	graph
we	drew	above,	but	it	is	the	same	graph	since	the	“input”	nodes	are	simply	shown	twice.	Pretty	awesome!

And	that’s	it!	You’ve	officially	written	and	run	your	first	ever	TensorFlow	graph,	and	you’ve	checked	it	out	in
TensorBoard!	Not	bad	for	a	few	lines	of	code!

For	more	practice,	try	adding	in	a	few	more	nodes,	experimenting	with	some	of	the	different	math	Ops	talked
about	and	adding	in	a	few	more	tf.constant	nodes.	Run	the	different	nodes	you’ve	added	and	make	sure	you
understand	exactly	how	data	is	moving	through	the	graph.

Once	you	are	done	constructing	your	graph,	let’s	be	tidy	and	close	the	Session	and	SummaryWriter:

writer.close()

sess.close()

Technically,	Session	objects	close	automatically	when	the	program	terminates	(or,	in	the	interactive	case,	when
you	close/restart	the	Python	kernel).	However,	it’s	best	to	explicitly	close	out	of	the	Session	to	avoid	any	sort	of
weird	edge	case	scenarios.

Here’s	the	full	Python	code	after	going	through	this	tutorial	with	our	example	values:

import	tensorflow	as	tf

a	=	tf.constant(5,	name="input_a")

b	=	tf.constant(3,	name="input_b")

c	=	tf.mul(a,b,	name="mul_c")

d	=	tf.add(a,b,	name="add_d")

e	=	tf.add(c,d,	name="add_e")

sess	=	tf.Session()

output	=	sess.run(e)

writer	=	tf.train.SummaryWriter('./my_graph',	sess.graph)

writer.close()

sess.close()





Thinking	with	tensors
Simple,	scalar	numbers	are	great	when	learning	the	basics	of	computation	graphs,	but

now	that	we	have	a	grasp	of	the	“flow”,	let’s	get	acquainted	with	tensors.

Tensors,	as	mentioned	before,	are	simply	the	n-dimensional	abstraction	of	matrices.	So
a	1-D	tensor	would	be	equivalent	to	a	vector,	a	2-D	tensor	is	a	matrix,	and	above	that	you
can	just	say	“N-D	tensor”.	With	this	in	mind,	we	can	modify	our	previous	example	graph
to	use	tensors:

Now,	instead	of	having	two	separate	input	nodes,	we	have	a	single	node	that	can	take	in
a	vector	(or	1-D	tensor)	of	numbers.	This	graph	has	several	advantages	over	our	previous
example:

1.	 The	client	only	has	to	send	input	to	a	single	node,	which	simplifies	using	the	graph.
2.	 The	nodes	that	directly	depend	on	the	input	now	only	have	to	keep	track	of	one

dependency	instead	of	two.
3.	 We	now	have	the	option	of	making	the	graph	take	in	vectors	of	any	length,	if	we’d

like.	This	would	make	the	graph	more	flexible.	We	can	also	have	the	graph	enforce	a
strict	requirement,	and	force	inputs	to	be	of	length	two	(or	any	length	we’d	like)

We	can	implement	this	change	in	TensorFlow	by	modifying	our	previous	code:
import	tensorflow	as	tf

a	=	tf.constant([5,3],	name="input_a")

b	=	tf.reduce_prod(a,	name="prod_b")

c	=	tf.reduce_sum(a,	name="sum_c")

d	=	tf.add(b,c,	name="add_d")

Aside	from	adjusting	the	variable	names,	we	made	two	main	changes	here:

1.	 We	replaced	the	separate	nodes	a	and	b	with	a	consolidated	input	node	(now	just	a).
We	passed	in	a	list	of	numbers,	which	tf.constant	is	able	to	convert	to	a	1-D	Tensor

2.	 Our	multiplication	and	addition	Operations,	which	used	to	take	in	scalar	values,	are
now	tf.reduce_prod()	and	tf.reduce_sum().	These	functions,	when	just	given	a	Tensor	as
input,	take	all	of	its	values	and	either	multiply	or	sum	them	up,	respectively.

In	TensorFlow,	all	data	passed	from	node	to	node	are	Tensor	objects.	As	we’ve	seen,

https://www.tensorflow.org/versions/master/api_docs/python/math_ops.html#reduce_prod
https://www.tensorflow.org/versions/master/api_docs/python/math_ops.html#reduce_sum


TensorFlow	Operations	are	able	to	look	at	standard	Python	types,	such	as	integers	and
strings,	and	automatically	convert	them	into	tensors.	There	are	a	variety	of	ways	to	create
Tensor	objects	manually	(that	is,	without	reading	it	in	from	an	external	data	source),	so	let’s
go	over	a	few	of	them.

In	this	book,	when	discussing	code	we	will	use	“tensor”	and	“Tensor”	interchangeably.

Python	Native	Types
TensorFlow	can	take	in	Python	numbers,	booleans,	strings,	or	lists	of	any	of	the	above.

Single	values	will	be	converted	to	a	0-D	Tensor	(or	scalar),	lists	of	values	will	be	converted
to	a	1-D	Tensor	(vector),	lists	of	lists	of	values	will	be	converted	to	a	2-D	Tensor	(matrix),
and	so	on.	Here’s	a	small	chart	showcasing	this:
t_0	=	50																													#	Treated	as	0-D	Tensor,	or	"scalar"

t_1	=	[b"apple",	b"peach",	b"grape"]	#	Treated	as	1-D	Tensor,	or	"vector"

t_2	=	[[True,	False,	False],									#	Treated	as	2-D	Tensor,	or	"matrix"

							[False,	False,	True],

							[False,	True,	False]]

t_3	=	[[	[0,	0],	[0,	1],	[0,	2]	],			#	Treated	as	3-D	Tensor

							[	[1,	0],	[1,	1],	[1,	2]	],

							[	[2,	0],	[2,	1],	[2,	2]	]]

...

TensorFlow	data	types
We	haven’t	seen	booleans	or	strings	yet,	but	you	can	think	of	tensors	as	a	way	to	store	any	data	in	a	structured
format.	Obviously,	math	functions	don’t	work	on	strings,	and	string-parsing	functions	don’t	work	on	numbers,	but
it’s	good	to	know	that	TensorFlow	can	handle	more	than	just	numerics!	Here’s	the	full	list	of	data	types	available
in	TensorFlow:

Data	type	(dtype) Description

tf.float32 32-bit	floating	point

tf.float64 64-bit	floating	point

tf.int8 8-bit	signed	integer

tf.int16 16-bit	signed	integer

tf.int32 32-bit	signed	integer

tf.int64 64-bit	signed	integer

tf.uint8 8-bit	unsigned	integer

tf.string String	(as	bytes	array,	not	Unicode)

https://www.tensorflow.org/versions/master/resources/dims_types.html#data-types


tf.bool Boolean

tf.complex64 Complex	number,	with	32-bit	floating	point	real	portion,	and	32-bit	floating	point	imaginary	portion

tf.qint8 8-bit	signed	integer	(used	in	quantized	Operations)

tf.qint32 32-bit	signed	integer	(used	in	quantized	Operations)

tf.quint8 8-bit	unsigned	integer	(used	in	quantized	Operations)

Using	Python	types	to	specify	Tensor	objects	is	quick	and	easy,	and	it	is	useful	for
prototyping	ideas.	However,	there	is	an	important	and	unfortunate	downside	to	doing	it
this	way.	TensorFlow	has	a	plethora	of	data	types	at	its	disposal,	but	basic	Python	types
lack	the	ability	to	explicitly	state	what	kind	of	data	type	you’d	like	to	use.	Instead,
TensorFlow	has	to	infer	which	data	type	you	meant.	With	some	types,	such	as	strings,	this
is	simple,	but	for	others	it	may	be	impossible.	For	example,	in	Python	all	integers	are	the
same	type,	but	TensorFlow	has	8-bit,	16-bit,	32-bit,	and	64-bit	integers	available.	There
are	ways	to	convert	the	data	into	the	appropriate	type	when	you	pass	it	into	TensorFlow,
but	certain	data	types	still	may	be	difficult	to	declare	correctly,	such	as	complex	numbers.
Because	of	this,	it	is	common	to	see	hand-defined	Tensor	objects	as	NumPy	arrays.

NumPy	arrays
TensorFlow	is	tightly	integrated	with	NumPy,	the	scientific	computing	package

designed	for	manipulating	N-dimensional	arrays.	If	you	don’t	have	experience	with
NumPy,	we	highly	recommend	looking	at	the	wealth	of	tutorials	and	documentation
available	for	the	library,	as	it	has	become	part	of	the	lingua	franca	of	data	science.
TensorFlow’s	data	types	are	based	on	those	from	NumPy;	in	fact,	the	statement	np.int32	==
tf.int32	returns	True!	Any	NumPy	array	can	be	passed	into	any	TensorFlow	Op,	and	the
beauty	is	that	you	can	easily	specify	the	data	type	you	need	with	minimal	effort.

https://www.python.org/dev/peps/pep-0237/
http://www.numpy.org/
http://www.numpy.org/
http://docs.scipy.org/doc/numpy-1.10.1/reference/arrays.dtypes.html




STRING	DATA	TYPES

There	is	a	“gotcha”	here	for	string	data	types.	For	numeric	and	boolean	types,	TensorFlow	and	NumPy	dtypes
match	down	the	line.	However,	tf.string	does	not	have	an	exact	match	in	NumPy	due	to	the	way	NumPy
handles	strings.	That	said,	TensorFlow	can	import	string	arrays	from	NumPy	perfectly	fine-	just	don’t	specify
a	dtype	in	NumPy!

As	a	bonus,	you	can	use	the	functionality	of	the	numpy	library	both	before	and	after
running	your	graph,	as	the	tensors	returned	from	Session.run	are	NumPy	arrays.	Here’s	an
example	of	how	to	create	NumPy	arrays,	mirroring	the	above	example.
import	numpy	as	np		#	Don't	forget	to	import	NumPy!

#	0-D	Tensor	with	32-bit	integer	data	type

t_0	=	np.array(50,	dtype=np.int32)

#	1-D	Tensor	with	byte	string	data	type

#	Note:	don't	explicitly	specify	dtype	when	using	strings	in	NumPy

t_1	=	np.array([b"apple",	b"peach",	b"grape"])

#	1-D	Tensor	with	boolean	data	type

t_2	=	np.array([[True,	False,	False],

																[False,	False,	True],

																[False,	True,	False]],

																dtype=np.bool)

#	3-D	Tensor	with	64-bit	integer	data	type

t_3	=	np.array([[	[0,	0],	[0,	1],	[0,	2]	],

																[	[1,	0],	[1,	1],	[1,	2]	],

																[	[2,	0],	[2,	1],	[2,	2]	]],

																dtype=np.int64)

...

Although	TensorFlow	is	designed	to	understand	NumPy	data	types	natively,	the	converse	is	not	true.	Don’t
accidentally	try	to	initialize	a	NumPy	array	with	tf.int32!

[FOOTNOTE]	Technically,	NumPy	is	able	to	automatically	detect	data	types	as	well,
but	it	really	is	best	to	start	getting	in	the	habit	of	being	explicit	about	the	numeric
properties	you	want	your	Tensor	objects	to	have.	When	you’re	dealing	with	huge	graphs,
you	really	don’t	want	to	have	to	hunt	down	which	objects	are	causing	a	TypeMismatchError!
The	one	exception	to	this	is	when	dealing	with	strings-	don’t	bother	specifying	a	dtype
when	creating	a	string	Tensor.

Using	NumPy	is	the	recommended	way	of	specifying	Tensor	objects	by	hand!



Tensor	shape
Throughout	the	TensorFlow	library,	you’ll	commonly	see	functions	and	Operations	that

refer	to	a	tensor’s	“shape”.	The	shape,	in	TensorFlow	terminology,	describes	both	the
number	dimensions	in	a	tensor	as	well	as	the	length	of	each	dimension.	Tensor	shapes	can
either	be	Python	lists	or	tuples	containing	an	ordered	set	of	integers:	there	are	as	many
numbers	in	the	list	as	there	are	dimensions,	and	each	number	describes	the	length	of	its
corresponding	dimension.	For	example,	the	list	[2,	3]	describes	the	shape	of	a	2-D	tensor
of	length	2	in	its	first	dimension	and	length	3	in	its	second	dimension.	Note	that	either
tuples	(wrapped	with	parentheses	())	or	lists	(wraped	with	brackets	[])	can	be	used	to
define	shapes.	Let’s	take	a	look	at	more	examples	to	illustrate	this	further:
#	Shapes	that	specify	a	0-D	Tensor	(scalar)

#	e.g.	any	single	number:	7,	1,	3,	4,	etc.

s_0_list	=	[]

s_0_tuple	=	()

#	Shape	that	describes	a	vector	of	length	3

#	e.g.	[1,	2,	3]

s_1	=	[3]

#	Shape	that	describes	a	3-by-2	matrix

#	e.g	[[1	,2],

#						[3,	4],

#						[5,	6]]

s_2	=	(3,	2)

In	addition	to	being	able	to	specify	fixed	lengths	to	each	dimension,	you	are	also	able
assign	a	flexible	length	by	passing	in	None	as	a	dimension’s	value.	Furthermore,	passing	in
the	value	None	as	a	shape	(instead	of	using	a	list/tuple	that	contains	None),	will	tell
TensorFlow	to	allow	a	tensor	of	any	shape.	That	is,	a	tensor	with	any	amount	of
dimensions	and	any	length	for	each	dimension:
#	Shape	for	a	vector	of	any	length:

s_1_flex	=	[None]

#	Shape	for	a	matrix	that	is	any	amount	of	rows	tall,	and	3	columns	wide:

s_2_flex	=	(None,	3)

#	Shape	of	a	3-D	Tensor	with	length	2	in	its	first	dimension,	and	variable-

#	length	in	its	second	and	third	dimensions:

s_3_flex	=	[2,	None,	None]

#	Shape	that	could	be	any	Tensor

s_any	=	None

If	you	ever	need	to	figure	out	the	shape	of	a	tensor	in	the	middle	of	your	graph,	you	can
use	the	tf.shape	Op.	It	simply	takes	in	the	Tensor	object	you’d	like	to	find	the	shape	for,
and	returns	it	as	an	int32	vector:
import	tensorflow	as	tf

#	...create	some	sort	of	mystery	tensor

#	Find	the	shape	of	the	mystery	tensor

shape	=	tf.shape(mystery_tensor,	name="mystery_shape")

Remember	that	tf.shape,	like	any	other	Operation,	doesn’t	run	until	it	is	executed	inside
of	a	Session.



REMINDER!

Tensors	are	just	a	superset	of	matrices!



TensorFlow	operations
As	mentioned	earlier,	TensorFlow	Operations,	also	known	as	Ops,	are	nodes	that

perform	computations	on	or	with	Tensor	objects.	After	computation,	they	return	zero	or
more	tensors,	which	can	be	used	by	other	Ops	later	in	the	graph.	To	create	an	Operation,
you	call	its	constructor	in	Python,	which	takes	in	whatever	Tensor	parameters	needed	for
its	calculation,	known	as	inputs,	as	well	as	any	additional	information	needed	to	properly
create	the	Op,	known	as	attributes.	The	Python	constructor	returns	a	handle	to	the
Operation’s	output	(zero	or	more	Tensor	objects),	and	it	is	this	output	which	can	be	passed
on	to	other	Operations	or	Session.run:
import	tensorflow	as	tf

import	numpy	as	np

#	Initialize	some	tensors	to	use	in	computation

a	=	np.array([2,	3],	dtype=np.int32)

b	=	np.array([4,	5],	dtype=np.int32)

#	Use	`tf.add()`	to	initialize	an	"add"	Operation

#	The	variable	`c`	will	be	a	handle	to	the	Tensor	output	of	this	Op

c	=	tf.add(a,	b)

https://www.tensorflow.org/versions/master/api_docs/python/framework.html#Operation




ZERO-INPUT,	ZERO-OUTPUT	OPERATIONS

Yes,	that	means	there	are	Ops	that	technically	take	in	zero	inputs	and	return	zero	outputs.	Ops	are	more	than
just	mathematical	computations,	and	are	used	for	tasks	such	as	initializing	state.	We’ll	be	going	over	some	of
these	non-mathematical	Operations	in	this	chapter,	but	for	now	just	remember	that	not	all	nodes	need	to	be
connected	to	other	nodes.

In	addition	to	inputs	and	attributes,	each	Operation	constructor	accepts	a	string
parameter,	name,	as	input.	As	we	saw	in	the	exercise	above,	providing	a	name	allows	us	to
refer	to	a	specific	Op	by	a	descriptive	string:
c	=	tf.add(a,	b,	name="my_add_op")

In	this	example,	we	give	the	name	“my_add_op”	to	the	add	Operation,	which	we’ll	be
able	to	refer	to	when	using	tools	such	as	TensorBoard.

You	may	find	that	you’ll	want	to	reuse	the	same	name	for	different	Operations	in	a	graph.	Instead	of	manually
adding	prefixes	or	suffixes	to	each	name,	you	can	use	a	name_scope	to	group	operations	together
programmatically.	We’ll	go	over	the	basic	use	of	name	scopes	in	the	exercise	at	the	end	of	this	chapter.

Overloaded	operators
TensorFlow	also	overloads	common	mathematical	operators	to	make	multiplication,	addition,	subtraction,	and
other	common	operations	more	concise.	If	one	or	more	arguments	to	the	operator	is	a	Tensor	object,	a
TensorFlow	Operation	will	be	called	and	added	to	the	graph.	For	example,	you	can	easily	add	two	tensors
together	like	this:

#	Assume	that	`a`	and	`b`	are	`Tensor`	objects	with	matching	shapes

c	=	a	+	b

Here	is	a	complete	list	of	overloaded	operators	for	tensors:

Unary	operators

Operator Related	TensorFlow
Operation Description

-x tf.neg() Returns	the	negative	value	of	each	element	in	x

~x tf.logical_not()
Returns	the	logical	NOT	of	each	element	in	x.	Only	compatible	with	Tensor	objects
with	dtype	of	tf.bool

abs(x) tf.abs() Returns	the	absolute	value	of	each	element	in	x

Binary	operators

Operator Related	TensorFlow
Operation Description

x	+	y tf.add() Add	x	and	y,	element-wise
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x	-	y tf.sub() Subtract	y	from	x,	element-wise

x	*	y tf.mul() Multiply	x	and	y,	element-wise

x	/	y
(Python	2)

tf.div()
Will	perform	element-wise	integer	division	when	given	an	integer	type	tensor,	and	floating
point	(“true”)	division	on	floating	point	tensors

x	/	y
(Python	3)

tf.truediv() Element-wise	floating	point	division	(including	on	integers)

x	//	y
(Python	3)

tf.floordiv() Element-wise	floor	division,	not	returning	any	remainder	from	the	computation

x	%	y tf.mod() Element-wise	modulo

x	**	y tf.pow() The	result	of	raising	each	element	in	x	to	its	corresponding	element	y,	element-wise

x	<	y tf.less() Returns	the	truth	table	of	x	<	y,	element-wise

x	<=	y tf.less_equal() Returns	the	truth	table	of	x	<=	y,	element-wise

x	>	y tf.greater() Returns	the	truth	table	of	x	>	y,	element-wise

x	>=	y tf.greater_equal() Returns	the	truth	table	of	x	>=	y,	element-wise

x	&	y tf.logical_and() Returns	the	truth	table	of	x	&	y,	element-wise.	dtype	must	be	tf.bool

x	|	y tf.logical_or() Returns	the	truth	table	of	x	|	y,	element-wise.	dtype	must	be	tf.bool

x	^	y tf.logical_xor() Returns	the	truth	table	of	x	^	y,	element-wise.	dtype	must	be	tf.bool

Using	these	overloaded	operators	can	be	great	when	quickly	putting	together	code,	but	you	will	not	be	able	to
give	name	values	to	each	of	these	Operations.	If	you	need	to	pass	in	a	name	to	the	Op,	call	the	TensorFlow
Operation	directly.

Technically,	the	==	operator	is	overloaded	as	well,	but	it	will	not	return	a	Tensor	of	boolean	values.
Instead,	it	will	return	True	if	the	two	tensors	being	compared	are	the	same	object,	and	False	otherwise.
This	is	mainly	used	for	internal	purposes.	If	you’d	like	to	check	for	equality	or	inequality,	check	out
tf.equal()	and	tf.not_equal,	respectively.
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TensorFlow	graphs
Thus	far,	we’ve	only	referenced	“the	graph”	as	some	sort	of	abstract,	omni-presence	in

TensorFlow,	and	we	haven’t	questioned	how	Operations	are	automatically	attached	to	a
graph	when	we	start	coding.	Now	that	we’ve	seen	some	examples,	let’s	take	a	look	at	the
TensorFlow	Graph	object,	learn	how	to	create	more	of	them,	use	multiple	graphs	in
conjunction	with	one	another.

Creating	a	Graph	is	simple-	its	constructor	doesn’t	take	any	variables:
import	tensorflow	as	tf

#	Create	a	new	graph:

g	=	tf.Graph()

Once	we	have	our	Graph	initialized,	we	can	add	Operations	to	it	by	using	the
Graph.as_default()	method	to	access	its	context	manager.	In	conjunction	with	the	with
statement,	we	can	use	the	context	manager	to	let	TensorFlow	know	that	we	want	to	add
Operations	to	a	specific	Graph:
with	g.as_default():

				#	Create	Operations	as	usual;	they	will	be	added	to	graph	`g`

				a	=	tf.mul(2,	3)

				...

You	might	be	wondering	why	we	haven’t	needed	to	specify	the	graph	we’d	like	to	add
our	Ops	to	in	the	previous	examples.	As	a	convenience,	TensorFlow	automatically	creates
a	Graph	when	the	library	is	loaded	and	assigns	it	to	be	the	default.	Thus,	any	Operations,
tensors,	etc.	defined	outside	of	a	Graph.as_default()	context	manager	will	automatically	be
placed	in	the	default	graph:
#	Placed	in	the	default	graph

in_default_graph	=	tf.add(1,2)

#	Placed	in	graph	`g`

with	g.as_default():

				in_graph_g	=	tf.mul(2,3)

#	We	are	no	longer	in	the	`with`	block,	so	this	is	placed	in	the	default	graph

also_in_default_graph	=	tf.sub(5,1)

If	you’d	like	to	get	a	handle	to	the	default	graph,	use	the	tf.get_default_graph()	function:
default_graph	=	tf.get_default_graph()

In	most	TensorFlow	programs,	you	will	only	ever	deal	with	the	default	graph.	However,
creating	multiple	graphs	can	be	useful	if	you	are	defining	multiple	models	that	do	not	have
interdependencies.	When	defining	multiple	graphs	in	one	file,	it’s	best	practice	to	either
not	use	the	default	graph	or	immediately	assign	a	handle	to	it.	This	ensures	that	nodes	are
added	to	each	graph	in	a	uniform	manner:

Correct	-	Create	new	graphs,	ignore	default	graph:
import	tensorflow	as	tf

g1	=	tf.Graph()

g2	=	tf.Graph()

with	g1.as_default():

				#	Define	g1	Operations,	tensors,	etc.

				...
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with	g2.as_default():

				#	Define	g2	Operations,	tensors,	etc.

				...

Correct	-	Get	handle	to	default	graph
import	tensorflow	as	tf

g1	=	tf.get_default_graph()

g2	=	tf.Graph()

with	g1.as_default():

				#	Define	g1	Operations,	tensors,	etc.

				...

with	g2.as_default():

				#	Define	g2	Operations,	tensors,	etc.

				...

Incorrect:	Mix	default	graph	and	user-created	graph	styles
import	tensorflow	as	tf

g2	=	tf.Graph()

#	Define	default	graph	Operations,	tensors,	etc.

...

with	g2.as_default():

				#	Define	g2	Operations,	tensors,	etc.

				...

Additionally,	it	is	possible	to	load	in	previously	defined	models	from	other	TensorFlow
scripts	and	assign	them	to	Graph	objects	using	a	combination	of	the	Graph.as_graph_def()	and
tf.import_graph_def	functions.	Thus,	a	user	can	compute	and	use	the	output	of	several
separate	models	in	the	same	Python	file.	We	will	cover	importing	and	exporting	graphs
later	in	this	book.
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TensorFlow	Sessions
Sessions,	as	discussed	in	the	previous	exercise,	are	responsible	for	graph	execution.	The

constructor
https://www.tensorflow.org/versions/master/api_docs/python/client.html#Session.init[tf.Session()
takes	in	three	optional	parameters:

target	specifies	the	execution	engine	to	use.	For	most	applications,	this	will	be	left	at
its	default	empty	string	value.	When	using	sessions	in	a	distributed	setting,	this
parameter	is	used	to	connect	to	tf.train.Server	instances	(covered	in	the	later	chapters
of	this	book).
graph	specifies	the	Graph	object	that	will	be	launched	in	the	Session.	The	default	value	is
None,	which	indicates	that	the	current	default	graph	should	be	used.	When	using
multiple	graphs,	it’s	best	to	explicitly	pass	in	the	Graph	you’d	like	to	run	(instead	of
creating	the	Session	inside	of	a	with	block).
config	allows	users	to	specify	options	to	configure	the	session,	such	as	limiting	the
number	of	CPUs	or	GPUs	to	use,	setting	optimization	parameters	for	graphs,	and
logging	options.

In	a	typical	TensorFlow	program,	Session	objects	will	be	created	without	changing	any
of	the	default	construction	parameters.
import	tensorflow	as	tf

#	Create	Operations,	Tensors,	etc	(using	the	default	graph)

a	=	tf.add(2,	5)

b	=	tf.mul(a,	3)

#	Start	up	a	`Session`	using	the	default	graph

sess	=	tf.Session()

Note	that	these	two	calls	are	identical:
sess	=	tf.Session()

sess	=	tf.Session(graph=tf.get_default_graph())

Once	a	Session	is	opened,	you	can	use	its	primary	method,	run(),	to	calculate	the	value	of
a	desired	Tensor	output:
sess.run(b)		#	Returns	21

Session.run()	takes	in	one	required	parameter,	fetches,	as	well	as	three	optional
parameters:	feed_dict,	options,	and	run_metadata.	We	won’t	cover	options	or	run_metadata,	as	they
are	still	experimental	(thus	prone	to	being	changed)	and	are	of	limited	use	at	this	time.
feed_dict,	however,	is	important	to	understand	and	will	be	covered	below.

Fetches
fetches	accepts	any	graph	element	(either	an	Operation	or	Tensor	object),	which	specifies

what	the	user	would	like	to	execute.	If	the	requested	object	is	a	Tensor,	then	the	output	of
run()	will	be	a	NumPy	array.	If	the	object	is	an	Operation,	then	the	output	will	be	None.

In	the	above	example,	we	set	fetches	to	the	tensor	b	(the	output	of	the	tf.mul	Operation).
This	tells	TensorFlow	that	the	Session	should	find	all	of	the	nodes	necessary	to	compute
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the	value	of	b,	execute	them	in	order,	and	output	the	value	of	b.	We	can	also	pass	in	a	list
of	graph	elements:
sess.run([a,	b])		#	returns	[7,	21]

When	fetches	is	a	list,	the	output	of	run()	will	be	a	list	with	values	corresponding	to	the
output	of	the	requested	elements.	In	this	example,	we	ask	for	the	values	of	a	and	b,	in	that
order.	Since	both	a	and	b	are	tensors,	we	receive	their	values	as	output.

In	addition	using	fetches	to	get	Tensor	outputs,	you’ll	also	see	examples	where	we	give
fetches	a	direct	handle	to	an	Operation	which	a	useful	side-effect	when	run.	An	example	of
this	is	tf.initialize_all_variables(),	which	prepares	all	TensorFlow	Variable	objects	to	be
used	(Variable	objects	will	be	covered	later	in	this	chapter).	We	still	pass	the	Op	as	the
fetches	parameter,	but	the	result	of	Session.run()	will	be	None:
#	Performs	the	computations	needed	to	initialize	Variables,	but	returns	`None`

sess.run(tf.initialize_all_variables())

Feed	dictionary
The	parameter	feed_dict	is	used	to	override	Tensor	values	in	the	graph,	and	it	expects	a

Python	dictionary	object	as	input.	The	keys	in	the	dictionary	are	handles	to	Tensor	objects
that	should	be	overridden,	while	the	values	can	be	numbers,	strings,	lists,	or	NumPy	arrays
(as	described	previously).	The	values	must	be	of	the	same	type	(or	able	to	be	converted	to
the	same	type)	as	the	Tensor	key.	Let’s	show	how	we	can	use	feed_dict	to	overwrite	the
value	of	a	in	the	previous	graph:
import	tensorflow	as	tf

#	Create	Operations,	Tensors,	etc	(using	the	default	graph)

a	=	tf.add(2,	5)

b	=	tf.mul(a,	3)

#	Start	up	a	`Session`	using	the	default	graph

sess	=	tf.Session()

#	Define	a	dictionary	that	says	to	replace	the	value	of	`a`	with	15

replace_dict	=	{a:	15}

#	Run	the	session,	passing	in	`replace_dict`	as	the	value	to	`feed_dict`

sess.run(b,	feed_dict=replace_dict)		#	returns	45

Notice	that	even	though	a	would	normally	evaluate	to	7,	the	dictionary	we	passed	into
feed_dict	replaced	that	value	with	15.	feed_dict	can	be	extremely	useful	in	a	number	of
situations.	Because	the	value	of	a	tensor	is	provided	up	front,	the	graph	no	longer	needs	to
compute	any	of	the	tensor’s	normal	dependencies.	This	means	that	if	you	have	a	large
graph	and	want	to	test	out	part	of	it	with	dummy	values,	TensorFlow	won’t	waste	time
with	unnecessary	computations.	feed_dict	is	also	useful	for	specifying	input	values,	as	we’ll
cover	in	the	upcoming	placeholder	section.

After	you	are	finished	using	the	Session,	call	its	close()	method	to	release	unneeded
resources:
#	Open	Session

sess	=	tf.Session()

#	Run	the	graph,	write	summary	statistics,	etc.

...

https://www.tensorflow.org/versions/master/api_docs/python/state_ops.html#initialize_all_variables


#	Close	the	graph,	release	its	resources

sess.close()

As	an	alternative,	you	can	also	use	the	Session	as	a	context	manager,	which	will
automatically	close	when	the	code	exits	its	scope:
with	tf.Session()	as	sess:

				#	Run	graph,	write	summary	statistics,	etc.

				...

#	The	Session	closes	automatically

We	can	also	use	a	Session	as	a	context	manager	by	using	its	as_default()	method.
Similarly	to	how	Graph	objects	can	be	used	implicitly	by	certain	Operations,	you	can	set	a
session	to	be	used	automatically	by	certain	functions.	The	most	common	of	such	functions
are	Operation.run()	and	Tensor.eval(),	which	act	as	if	you	had	passed	them	in	to	Session.run()
directly.
#	Define	simple	constant

a	=	tf.constant(5)

#	Open	up	a	Session

sess	=	tf.Session()

#	Use	the	Session	as	a	default	inside	of	`with`	block

with	sess.as_default():

				a.eval()

#	Have	to	close	Session	manually.

sess.close()
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MORE	ON	INTERACTIVESESSION

Earlier	in	the	book,	we	mentioned	that	InteractiveSession	is	another	type	of	TensorFlow	session,	but	that
we	wouldn’t	be	using	it.	All	InteractiveSession	does	is	automatically	make	itself	the	default	session	in	the
runtime.	This	can	be	handy	when	using	an	interactive	Python	shell,	as	you	can	use	a.eval()	or	a.run()
instead	of	having	to	explicitly	type	out	sess.run([a]).	However,	if	you	need	to	juggle	multiple	sessions,
things	can	get	a	little	tricky.	We	find	that	maintaining	a	consistent	way	of	running	graphs	makes	debugging
much	easier,	so	we’re	sticking	with	regular	Session	objects.

Now	that	we’ve	got	a	firm	understanding	of	running	our	graph,	let’s	look	at	how	to
properly	specify	input	nodes	and	use	feed_dict	in	conjunction	with	them.



Adding	Inputs	with	Placeholder	nodes
You	may	have	noticed	that	the	graph	we	defined	previously	doesn’t	use	true	“input”;	it

always	uses	the	same	numbers,	5	and	3.	What	we	would	like	to	do	instead	is	take	values
from	the	client	so	that	we	can	reuse	the	transformation	described	by	our	graph	with	all
sorts	of	different	numbers.	We	do	that	with	what	is	called	a	“placeholder”.	Placeholders,	as
the	name	implies,	act	as	if	they	are	Tensor	objects,	but	they	do	not	have	their	values
specified	when	created.	Instead,	they	hold	the	place	for	a	Tensor	that	will	be	fed	at
runtime,	in	effect	becoming	an	“input”	node.	Creating	placeholders	is	done	using	the
tf.placeholder	Operation:
import	tensorflow	as	tf

import	numpy	as	np

#	Creates	a	placeholder	vector	of	length	2	with	data	type	int32

a	=	tf.placeholder(tf.int32,	shape=[2],	name="my_input")

#	Use	the	placeholder	as	if	it	were	any	other	Tensor	object

b	=	tf.reduce_prod(a,	name="prod_b")

c	=	tf.reduce_sum(a,	name="sum_c")

#	Finish	off	the	graph

d	=	tf.add(b,	c,	name="add_d")

tf.placeholder	takes	in	a	required	parameter	dtype,	as	well	as	the	optional	parameter	shape:

dtype	specifies	the	data	type	of	values	that	will	be	passed	into	the	placeholder.	This	is
required,	as	it	is	needed	to	ensure	that	there	will	be	no	type	mismatch	errors.
shape	specifies	what	shape	the	fed	Tensor	will	be.	See	the	discussion	on	Tensor	shapes
above.	The	default	value	of	shape	is	None,	which	means	a	Tensor	of	any	shape	will	be
accepted.

Like	any	Operation,	you	can	also	specify	a	name	identifier	to	tf.placeholder.

In	order	to	actually	give	a	value	to	the	placeholder,	we’ll	use	the	feed_dict	parameter	in
Session.run().	We	use	the	handle	to	the	placeholder’s	output	as	the	key	to	the	dictionary	(in
the	above	code,	the	variable	a),	and	the	Tensor	object	we	want	to	pass	in	as	its	value:
#	Open	a	TensorFlow	Session

sess	=	tf.Session()

#	Create	a	dictionary	to	pass	into	`feed_dict`

#	Key:	`a`,	the	handle	to	the	placeholder's	output	Tensor

#	Value:	A	vector	with	value	[5,	3]	and	int32	data	type

input_dict	=	{a:	np.array([5,	3],	dtype=np.int32)}

#	Fetch	the	value	of	`d`,	feeding	the	values	of	`input_vector`	into	`a`

sess.run(d,	feed_dict=input_dict)

You	must	include	a	key-value	pair	in	feed_dict	for	each	placeholder	that	is	a	dependency
of	the	fetched	output.	Above,	we	fetched	d,	which	depends	on	the	output	of	a.	If	we	had
defined	additional	placeholders	that	d	did	not	depend	on,	we	would	not	need	to	include
them	in	the	feed_dict.

You	cannot	fetch	the	value	of	placeholders-	it	will	simply	raise	an	exception	if	you	try	to	feed	one	into
Session.run().

https://www.tensorflow.org/versions/master/api_docs/python/io_ops.html#placeholder


Variables

Creating	variables
Tensor	and	Operation	objects	are	immutable,	but	machine	learning	tasks,	by	their	nature,

need	a	mechanism	to	save	changing	values	over	time.	This	is	accomplished	in	TensorFlow
with	Variable	objects,	which	contain	mutable	tensor	values	that	persist	across	multiple	calls
to	Session.run().	You	can	create	a	Variable	by	using	its	constructor,	tf.Variable():
import	tensorflow	as	tf

#	Pass	in	a	starting	value	of	three	for	the	variable

my_var	=	tf.Variable(3,	name="my_variable")

Variables	can	be	used	in	TensorFlow	functions/Operations	anywhere	you	might	use	a
Tensor;	its	present	value	will	be	passed	on	to	the	Operation	using	it:
add	=	tf.add(5,	my_var)

mul	=	tf.mul(8,	my_var)

The	initial	value	of	Variables	will	often	be	large	tensors	of	zeros,	ones,	or	random
values.	To	make	it	easier	to	create	these	common	values,	TensorFlow	has	a	number	of
helper	Ops,	such	as	tf.zeros(),	tf.ones(),	tf.random_normal(),	and	tf.random_uniform(),	each	of
which	takes	in	a	shape	parameter	which	specifies	the	dimension	of	the	desired	Tensor:
#	2x2	matrix	of		zeros

zeros	=	tf.zeros([2,	2])

#	vector	of	length	6	of	ones

ones	=	tf.ones([6])

#	3x3x3	Tensor	of	random	uniform		values	between	0	and	10

uniform	=	tf.random_uniform([3,	3,	3],	minval=0,	maxval=10)

#	3x3x3	Tensor	of	normally	distributed	numbers;	mean	0	and	standard	deviation	2

normal	=	tf.random_normal([3,	3,	3],	mean=0.0,	stddev=2.0)

Instead	of	using	tf.random_normal(),	you’ll	often	see	use	of	tf.truncated_normal()	instead,	as
it	doesn’t	create	any	values	more	than	two	standard	deviations	away	from	its	mean.	This
prevents	the	possibility	of	having	one	or	two	numbers	be	significantly	different	than	the
other	values	in	the	tensor:
#	No	values	below	3.0	or	above	7.0	will	be	returned	in	this	Tensor

trunc	=	tf.truncated_normal([2,	2],	mean=5.0,	stddev=1.0)

You	can	pass	in	these	Operations	as	the	initial	values	of	Variables	as	you	would	a	hand-
written	Tensor:
#	Default	value	of	mean=0.0

#	Default	value	of	stddev=1.0

random_var	=	tf.Variable(tf.truncated_normal([2,	2]))

Variable	Initialization
Variable	objects	live	in	the	Graph	like	most	other	TensorFlow	objects,	but	their	state	is

actually	managed	by	a	Session.	Because	of	this,	Variables	have	an	extra	step	involved	in
order	to	use	them-	you	must	initialize	the	Variable	within	a	Session.	This	causes	the	Session	to
start	keeping	track	of	the	ongoing	value	of	the	Variable.	This	is	typically	done	by	passing	in
the	tf.initialize_all_variables()	Operation	to	Session.run():

https://www.tensorflow.org/versions/master/api_docs/python/state_ops.html#Variable
https://www.tensorflow.org/versions/master/api_docs/python/constant_op.html#zeros
https://www.tensorflow.org/versions/master/api_docs/python/constant_op.html#ones
https://www.tensorflow.org/versions/master/api_docs/python/constant_op.html#random_normal
https://www.tensorflow.org/versions/master/api_docs/python/constant_op.html#random_uniform
https://www.tensorflow.org/versions/master/api_docs/python/constant_op.html#truncated_normal
https://www.tensorflow.org/versions/master/api_docs/python/state_ops.html#initialize_all_variables


init	=	tf.initialize_all_variables()

sess	=	tf.Session()

sess.run(init)

If	you’d	only	like	to	initialize	a	subset	of	Variables	defined	in	the	graph,	you	can	use
tf.initialize_variables(),	which	takes	in	a	list	of	Variables	to	be	initialized:
var1	=	tf.Variable(0,	name="initialize_me")

var2	=	tf.Variable(1,	name="no_initialization")

init	=	tf.initialize_variables([var1],	name="init_var1")

sess	=	tf.Session()

sess.run(init)

Changing	Variables
In	order	to	change	the	value	of	the	Variable,	you	can	use	the	Variable.assign()	method,

which	gives	the	Variable	the	new	value	to	be.	Note	that	Variable.assign()	is	an	Operation,	and
must	be	run	in	a	Session	to	take	effect:
#	Create	variable	with	starting	value	of	1

my_var	=	tf.Variable(1)

#	Create	an	operation	that	multiplies	the	variable	by	2	each	time	it	is	run

my_var_times_two	=	my_var.assign(my_var	*	2)

#	Initialization	operation

init	=	tf.initialize_all_variables()

#	Start	a	session

sess	=	tf.Session()

#	Initialize	variable

sess.run(init)

#	Multiply	variable	by	two	and	return	it

sess.run(my_var_times_two)

##	OUT:	2

#	Multiply	again

sess.run(my_var_times_two)

##	OUT:	4

#	Multiply	again

sess.run(my_var_times_two)

##	OUT:	8

For	simple	incrementing	and	decrementing	of	Variables,	TensorFlow	includes	the
Variable.assign_add()	Variable.assign_sub()	methods:
#	Increment	by	1

sess.run(my_var.assign_add(1))

#	Decrement	by	1

sess.run(my_var.assign_sub(1))

Because	Sessions	maintain	Variable	values	separately,	each	Session	can	have	its	own
current	value	for	a	Variable	defined	in	a	graph:
#	Create	Ops

my_var	=	tf.Variable(0)

init	=	tf.initialize_all_variables()

#	Start	Sessions

sess1	=	tf.Session()

sess2	=	tf.Session()

#	Initialize	Variable	in	sess1,	and	increment	value	of	my_var	in	that	Session

sess1.run(init)

sess1.run(my_var.assign_add(5))

##	OUT:	5

https://www.tensorflow.org/versions/master/api_docs/python/state_ops.html#Variable.assign
https://www.tensorflow.org/versions/master/api_docs/python/state_ops.html#Variable.assign_add
https://www.tensorflow.org/versions/master/api_docs/python/state_ops.html#Variable.assign_sub


#	Do	the	same	with	sess2,	but	use	a	different	increment	value

sess2.run(init)

sess2.run(my_var.assign_add(2))

##	OUT:	2

#	Can	increment	the	Variable	values	in	each	Session	independently

sess1.run(my_var.assign_add(5))

##	OUT:	10

sess2.run(my_var.assign_add(2))

##	OUT:	4

If	you’d	like	to	reset	your	Variables	to	their	starting	value,	simply	call
tf.initialize_all_variables()	again	(or	tf.initialize_variables	if	you	only	want	to	reset	a	subset
of	them):
#	Create	Ops

my_var	=	tf.Variable(0)

init	=	tf.initialize_all_variables()

#	Start	Session

sess	=	tf.Session()

#	Initialize	Variables

sess.run(init)

#	Change	the	Variable

sess.run(my_var.assign(10))

#	Reset	the	Variable	to	0,	its	initial	value

sess.run(init)

Trainable
Later	in	this	book,	you’ll	see	various	Optimizer	classes	which	automatically	train	machine

learning	models.	That	means	that	it	will	change	values	of	Variable	objects	without
explicitly	asking	to	do	so.	In	most	cases,	this	is	what	you	want,	but	if	there	are	Variables	in
your	graph	that	should	only	be	changed	manually	and	not	with	an	Optimizer,	you	need	to	set
their	trainable	parameter	to	False	when	creating	them:
not_trainable	=	tf.Variable(0,	trainable=False)

This	is	typically	done	with	step	counters	or	anything	else	that	isn’t	going	to	be	involved
in	the	calculation	of	a	machine	learning	model.



Organizing	your	graph	with	name	scopes

We’ve	now	covered	the	core	building	blocks	necessary	to	build	any	TensorFlow	graph.
So	far,	we’ve	only	worked	with	toy	graphs	containing	a	few	nodes	and	small	tensors,	but
real	world	models	can	contain	dozens	or	hundreds	of	nodes,	as	well	as	millions	of
parameters.	In	order	to	manage	this	level	of	complexity,	TensorFlow	currently	offers	a
mechanism	to	help	organize	your	graphs:	name	scopes.

Name	scopes	are	incredibly	simple	to	use	and	provide	great	value	when	visualizing
your	graph	with	TensorBoard.	Essentially,	name	scopes	allow	you	to	group	Operations
into	larger,	named	blocks.	Then,	when	you	launch	your	graph	with	TensorBoard,	each
name	scope	will	encapsulate	its	own	Ops,	making	the	visualization	much	more	digestible.
For	basic	name	scope	usage,	simply	add	your	Operations	in	a	with	tf.name_scope(<name>)
block:
import	tensorflow	as	tf

with	tf.name_scope("Scope_A"):

				a	=	tf.add(1,	2,	name="A_add")

				b	=	tf.mul(a,	3,	name="A_mul")

with	tf.name_scope("Scope_B"):

				c	=	tf.add(4,	5,	name="B_add")

				d	=	tf.mul(c,	6,	name="B_mul")

e	=	tf.add(b,	d,	name="output")

To	see	the	result	of	these	name	scopes	in	TensorBoard,	let’s	open	up	a	SummaryWriter	and
write	this	graph	to	disk.
writer	=	tf.train.SummaryWriter('./name_scope_1',	graph=tf.get_default_graph())

writer.close()

Because	the	SummaryWriter	exports	the	graph	immediately,	we	can	simply	start	up
TensorBoard	after	running	the	above	code.	Navigate	to	where	you	ran	the	previous	script
and	start	up	TensorBoard:
$	tensorboard	--logdir='./name_scope_1'

As	before,	this	will	start	a	TensorBoard	server	on	your	local	computer	at	port	6006.
Open	up	a	browser	and	enter	localhost:6006	into	the	URL	bar.	Navigate	to	the	“Graph”	tab,
and	you’ll	see	something	similar	to	this:



You’ll	notice	that	the	add	and	mul	Operations	we	added	to	the	graph	aren’t	immediately
visible-	instead,	we	see	their	enclosing	name	scopes.	You	can	expand	the	name	scope
boxes	by	clicking	on	the	plus	+	icon	in	their	upper	right	corner.

Inside	of	each	scope,	you’ll	see	the	individual	Operations	you’ve	added	to	the	graph.
You	can	also	nest	name	scopes	within	other	name	scopes:
graph	=	tf.Graph()

with	graph.as_default():

				in_1	=	tf.placeholder(tf.float32,	shape=[],	name="input_a")

				in_2	=	tf.placeholder(tf.float32,	shape=[],	name="input_b")

				const	=	tf.constant(3,	dtype=tf.float32,	name="static_value")

				with	tf.name_scope("Transformation"):

								with	tf.name_scope("A"):

												A_mul	=	tf.mul(in_1,	const)

												A_out	=	tf.sub(A_mul,	in_1)

								with	tf.name_scope("B"):



												B_mul	=	tf.mul(in_2,	const)

												A_out	=	tf.sub(B_mul,	in_2)

								with	tf.name_scope("C"):

												C_div	=	tf.div(A_out,	B_out)

												C_out	=	tf.add(C_div,	const)

								with	tf.name_scope("D"):

												D_div	=	tf.div(B_out,	A_out)

												D_out	=	tf.add(D_div,	const)

				out	=	tf.maximum(C_out,	D_out)

writer	=	tf.train.SummaryWriter('./name_scope_2',	graph=graph)

writer.close()

To	mix	things	up,	this	code	explicitly	creates	a	tf.Graph	object	instead	of	using	the
default	graph.	Let’s	look	at	the	code	and	focus	on	the	name	scopes	to	see	exactly	how	it’s
structured:
graph	=	tf.Graph()

with	graph.as_default():

				in_1	=	tf.placeholder(...)

				in_2	=	tf.placeholder(...)

				const	=	tf.constant(...)

				with	tf.name_scope("Transformation"):

								with	tf.name_scope("A"):

												#	Takes	in_1,	outputs	some	value

												...

								with	tf.name_scope("B"):

												#	Takes	in_2,	outputs	some	value

												...

								with	tf.name_scope("C"):

												#	Takes	the	output	of	A	and	B,	outputs	some	value

												...

								with	tf.name_scope("D"):

												#	Takes	the	output	of	A	and	B,	outputs	some	value

												...

				#	Takes	the	output	of	C	and	D

				out	=	tf.maximum(...)

Now	it’s	easier	to	dissect.	This	model	has	two	scalar	placeholder	nodes	as	input,	a
TensorFlow	constant,	a	middle	chunk	called	“Transformation”,	and	then	a	final	output
node	that	uses	tf.maximum()	as	its	Operation.	We	can	see	this	high-level	overview	inside	of
TensorBoard:
#	Start	up	TensorBoard	in	a	terminal,	loading	in	our	previous	graph

$	tensorboard	--logdir='./name_scope_2'

https://www.tensorflow.org/versions/master/api_docs/python/math_ops.html#maximum


Inside	of	the	Transformation	name	scope	are	four	more	name	scopes	arranged	in	two
“layers”.	The	first	layer	is	comprised	of	scopes	“A”	and	“B”,	which	pass	their	output
values	into	the	next	layer	of	“C”	and	“D”.	The	final	node	then	uses	the	outputs	from	this
last	layer	as	its	input.	If	you	expand	the	Transformation	name	scope	in	TensorBoard,
you’ll	get	a	look	at	this:

This	also	gives	us	a	chance	to	showcase	another	feature	in	TensorBoard.	In	the	above
picture,	you’ll	notice	that	name	scopes	“A”	and	“B”	have	matching	color	(blue),	as	do	“C”
and	“D”	(green).	This	is	due	to	the	fact	that	these	name	scopes	have	identical	Operations
setup	in	the	same	configuration.	That	is,	“A”	and	“B”	both	have	a	tf.mul()	Op	feeding	into
a	tf.sub()	Op,	while	“C”	and	“D”	have	a	tf.div()	Op	that	feeds	into	a	tf.add()	Op.	This
becomes	handy	if	you	start	using	functions	to	create	repeated	sequences	of	Operations.



In	this	image,	you	can	see	that	tf.constant	objects	don’t	behave	quite	the	same	way	as
other	Tensors	or	Operations	when	displayed	in	TensorBoard.	Even	though	we	declared
static_value	outside	of	any	name	scope,	it	still	gets	placed	inside	them.	Furthermore,
instead	of	there	being	one	icon	for	static_value,	it	creates	a	small	visual	whenever	it	is	used.
The	basic	idea	for	this	is	that	constants	can	be	used	at	any	time	and	don’t	necessarily	need
to	be	used	in	any	particular	order.	To	prevent	arrows	flying	all	over	the	graph	from	a	single
point,	it	just	makes	a	little	small	impression	whenever	a	constant	is	used.

ASIDE:	tf.maximum()

Separating	a	huge	graph	into	meaningful	clusters	can	make	understanding	and
debugging	your	model	a	much	more	approachable	task.



Logging	with	TensorBoard



Exercise:	Putting	it	together

We’ll	end	this	chapter	with	an	exercise	that	uses	all	of	the	components	we’ve	discussed:
Tensors,	Graphs,	Operations,	Variables,	placeholders,	Sessions,	and	name	scopes.	We’ll
also	include	some	TensorBoard	summaries	so	we	can	keep	track	of	the	graph	as	it	runs.	By
the	end	of	this,	you	should	feel	comfortable	composing	basic	TensorFlow	graphs	and
exploring	it	in	TensorBoard.

At	its	core,	it	is	going	to	be	the	same	sort	of	transformation	as	our	first	basic	model:

But,	this	time	it’s	going	to	have	some	important	differences	that	use	TensorFlow	more
fully:

Our	inputs	will	be	placeholders	instead	of	tf.constant	nodes
Instead	of	taking	two	discrete	scalar	inputs,	our	model	will	take	in	a	single	vector	of
any	length
We’re	going	to	accumulate	the	total	value	of	all	outputs	over	time	as	we	use	the	graph
The	graph	will	be	segmented	nicely	with	name	scopes
After	each	run,	we	are	going	to	save	the	output	of	the	graph,	the	accumulated	total	of
all	outputs,	and	the	average	value	of	all	outputs	to	disk	for	use	in	TensorBoard

Here’s	a	rough	outline	of	what	we’d	like	our	graph	to	look	like:



Here	are	the	key	things	to	note	about	reading	this	model:

Notice	how	each	edge	now	has	either	a	[None]	or	[]	icon	next	to	it.	This	represents	the
TensorFlow	shape	of	the	tensor	flowing	through	that	edge,	with	None	representing	a
vector	of	any	length,	and	[]	representing	a	scalar.
The	output	of	node	d	now	flows	into	an	“update”	section,	which	contains	Operations
necessary	to	update	Variables	as	well	as	pass	data	through	to	the	TensorBoard
summaries.
We	have	a	separate	name	scope	to	contain	our	two	Variables-	one	to	store	the
accumulated	sum	of	our	outputs,	the	other	to	keep	track	of	how	many	times	we’ve
run	the	graph.	Since	these	two	Variables	operate	outside	of	the	flow	of	our	main
transformation,	it	makes	sense	to	put	them	in	a	separate	space.
There	is	a	name	scope	dedicated	to	our	TensorBoard	summaries	which	will	hold	our
tf.scalar_summary	Operations.	We	place	them	after	the	“update”	section	to	ensure	that
the	summaries	are	added	after	we	update	our	Variables,	otherwise	things	could	run
out	of	order.

Let’s	get	going!	Open	up	your	code	editor	or	interactive	Python	environment.



Building	the	graph
The	first	thing	we’ll	need	to	do,	as	always,	is	import	the	TensorFlow	library:

import	tensorflow	as	tf

We’re	going	to	explicitly	create	the	graph	that	we’d	like	to	use	instead	of	using	the
default	graph,	so	make	one	with	tf.Graph():
graph	=	tf.Graph()

And	then	we’ll	set	our	new	graph	as	the	default	while	we	construct	our	model:
with	graph.as_default():

We	have	two	“global”	style	Variables	in	our	model.	The	first	is	a	“global_step”,	which
will	keep	track	of	how	many	times	we’ve	run	our	model.	This	is	a	common	paradigm	in
TensorFlow,	and	you’ll	see	it	used	throughout	the	API.	The	second	Variable	is	called
“total_output”-	it’s	going	to	keep	track	of	the	total	sum	of	all	outputs	run	on	this	model
over	time.	Because	these	Variables	are	global	in	nature,	we	declare	them	separately	from
the	rest	of	the	nodes	in	the	graph	and	place	them	into	their	own	name	scope:
with	graph.as_default():

				with	tf.name_scope("variables"):

								#	Variable	to	keep	track	of	how	many	times	the	graph	has	been	run

								global_step	=	tf.Variable(0,	dtype=tf.int32,	trainable=False,	name="global_step")

								#	Variable	that	keeps	track	of	the	sum	of	all	output	values	over	time:

								total_output	=	tf.Variable(0.0,	dtype=tf.float32,	trainable=False,	name="total_output")

Note	that	we	use	the	trainable=False	setting-	it	won’t	have	an	impact	in	this	model	(we
aren’t	training	anything!),	but	it	makes	it	explicit	that	these	Variables	will	be	set	by	hand.

Next	up,	we’ll	create	the	core	transformation	part	of	the	model.	We’ll	encapsulate	the
entire	transformation	in	a	name	scope,	“transformation”,	and	separate	them	further	into
separate	“input”,	“intermediate_layer”,	and	“output”	name	scopes:
with	graph.as_default():

				with	tf.name_scope("variables"):

								...

				with	tf.name_scope("transformation"):

								#	Separate	input	layer

								with	tf.name_scope("input"):

												#	Create	input	placeholder-	takes	in	a	Vector

												a	=	tf.placeholder(tf.float32,	shape=[None],	name="input_placeholder_a")

								#	Separate	middle	layer

								with	tf.name_scope("intermediate_layer"):

												b	=	tf.reduce_prod(a,	name="product_b")

												c	=	tf.reduce_sum(a,	name="sum_c")

								#	Separate	output	layer

								with	tf.name_scope("output"):

												output	=	tf.add(b,	c,	name="output")

This	is	extremely	similar	to	the	code	written	for	the	previous	model,	with	a	few	key
differences:

Our	input	node	is	a	tf.placeholder	that	accepts	a	vector	of	any	length	(shape=[None]).
Instead	of	using	tf.mul()	and	tf.add(),	we	use	tf.reduce_prod()	and	tf.reduce_sum(),



respectively.	This	allows	us	to	multiply	and	add	across	the	entire	input	vector,	as	the
earlier	Ops	only	accept	exactly	2	input	scalars.

After	the	transformation	computation,	we’re	going	to	need	to	update	our	two	Variables
from	above.	Let’s	create	an	“update”	name	scope	to	hold	these	changes:
with	graph.as_default():

				with	tf.name_scope("variables"):

								...

				with	tf.name_scope("transformation"):

								...

				with	tf.name_scope("update"):

								#	Increments	the	total_output	Variable	by	the	latest	output

								update_total	=	total_output.assign_add(output)

								#	Increments	the	above	`global_step`	Variable,	should	be	run	whenever	the	graph	is	run

								increment_step	=	global_step.assign_add(1)

We	use	the	Variable.assign_add()	Operation	to	increment	both	total_output	and	global_step.
We	add	on	the	value	of	output	to	total_output,	as	we	want	to	accumulate	the	sum	of	all
outputs	over	time.	For	global_step,	we	simply	increment	it	by	one.

After	we	have	updated	our	Variables,	we	can	create	the	TensorBoard	summaries	we’re
interested	in.	We’ll	place	those	inside	a	name	scope	called	“summaries”:
with	graph.as_default():

								...

				with	tf.name_scope("update"):

								...

				with	tf.name_scope("summaries"):

								avg	=	tf.div(update_total,	tf.cast(increment_step,	tf.float32),	name="average")

								#	Creates	summaries	for	output	node

								tf.scalar_summary(b'Output',	output,	name="output_summary")

								tf.scalar_summary(b'Sum	of	outputs	over	time',	update_total,	name="total_summary")

								tf.scalar_summary(b'Average	of	outputs	over	time',	avg,	name="average_summary")

The	first	thing	we	do	inside	of	this	section	is	compute	the	average	output	value	over
time.	Luckily,	we	have	the	total	value	of	all	outputs	with	total_output	(we	use	the	output
from	update_total	to	make	sure	that	the	update	happens	before	we	compute	avg),	as	well	as
the	total	number	of	times	we’ve	run	the	graph	with	global_step	(same	thing-	we	use	the
output	of	increment_step	to	make	sure	the	graph	runs	in	order).	Once	we	have	the	average,
we	save	output,	update_total	and	avg	with	separate	tf.scalar_summary	objects.

To	finish	up	the	graph,	we’ll	create	our	Variable	initialization	Operation	as	well	as	a
helper	node	to	group	all	of	our	summaries	into	one	Op.	Let’s	place	these	in	a	name	scope
called	“global_ops”:
with	graph.as_default():

								...

				with	tf.name_scope("summaries"):

								...

				with	tf.name_scope("global_ops"):

								#	Initialization	Op

								init	=	tf.initialize_all_variables()

								#	Merge	all	summaries	into	one	Operation

								merged_summaries	=	tf.merge_all_summaries()

You	may	be	wondering	why	we	placed	the	tf.merge_all_summaries()	Op	here	instead	of	the
“summaries”	name	scope.	While	it	doesn’t	make	a	huge	difference	here,	placing



merge_all_summaries()	with	other	global	Operations	is	generally	best	practice.	This	graph	only
has	one	section	for	summaries,	but	you	can	imagine	a	graph	having	different	summaries
for	Variables,	Operations,	name	scopes,	etc.	By	keeping	merge_all_summaries()	separate,	it
ensures	that	you’ll	be	able	to	find	the	Operation	without	having	to	remember	which
specific	“summary”	code	block	you	placed	it	in.

That’s	it	for	creating	the	graph!	Now	let’s	get	things	set	up	to	execute	the	graph.



Running	the	graph
Let’s	open	up	a	Session	and	launch	the	Graph	we	just	made.	We	can	also	open	up	a

tf.train.SummaryWriter,	which	we’ll	use	to	save	our	summaries.	Here,	we	list	./improved_graph
as	our	destination	folder	for	summaries	to	be	saved.
sess	=	tf.Session(graph=graph)

writer	=	tf.train.SummaryWriter('./improved_graph',	graph)

With	a	Session	started,	let’s	initialize	our	Variables	before	doing	anything	else:
sess.run(init)

To	actually	run	our	graph,	let’s	create	a	helper	function,	run_graph()	so	that	we	don’t	have
to	keep	typing	the	same	thing	over	and	over	again.	What	we’d	like	is	to	pass	in	our	input
vector	to	the	function,	which	will	run	the	graph	and	save	our	summaries:
def	run_graph(input_tensor):

				feed_dict	=	{a:	input_tensor}

				_,	step,	summary	=	sess.run([output,	increment_step,	merged_summaries],

																																		feed_dict=feed_dict)

				writer.add_summary(summary,	global_step=step)

Here’s	the	line-by-line	breakdown	of	run_graph():

1.	 First,	we	create	a	dictionary	to	use	as	a	feed_dict	in	Session.run().	This	corresponds	to
our	tf.placeholder	node,	using	its	handle	a.

2.	 Next,	we	tell	our	Session	to	run	the	graph	using	our	feed_dict,	and	we	want	to	make
sure	that	we	run	output,	increment_step,	and	our	merged_summaries	Ops.	We	need	to	save	the
global_step	and	merged_summaries	values	in	order	to	write	our	summaries,	so	we	save
them	to	the	step	and	summary	Python	variables.	We	use	an	underscore	_	to	indicate	that
we	don’t	care	about	storing	the	value	of	output.

3.	 Finally,	we	add	the	summaries	to	our	SummaryWriter.	The	global_step	parameter	is
important,	as	it	allows	TensorBoard	to	graph	data	over	time	(it	essentially	creates	the
x-axis	on	a	line	chart	coming	up).

Let’s	actually	use	it!	Call	run_graph	several	times	with	vectors	of	various	lengths-	like
this:
run_graph([2,8])

run_graph([3,1,3,3])

run_graph([8])

run_graph([1,2,3])

run_graph([11,4])

run_graph([4,1])

run_graph([7,3,1])

run_graph([6,3])

run_graph([0,2])

run_graph([4,5,6])

Do	is	as	many	times	as	you’d	like.	Once	you’ve	had	your	fill,	go	ahead	and	write	the
summaries	to	disk	with	the	SummaryWriter.flush()	method:
writer.flush()

Finally,	let’s	be	tidy	and	close	both	our	SummaryWriter	and	Session,	now	that	we’re	done
with	them:
writer.close()

sess.close()



And	that’s	it	for	our	TensorFlow	code!	It	was	a	little	longer	than	the	last	graph,	but	it
wasn’t	too	bad.	Let’s	open	up	TensorBoard	and	see	what	we’ve	got.	Fire	up	a	terminal
shell,	navigate	to	the	directory	where	you	ran	this	code	(make	sure	the	“improved_graph”
directory	is	located	there),	and	run	the	following:
$	tensorboard	--logdir="improved_graph"

As	usual,	this	starts	up	a	TensorBoard	server	on	port	6006,	hosting	the	data	stored	in
“improved_graph”.	Type	in	“localhost:6006”	into	your	web	browser	and	let’s	see	what
we’ve	got!	Let’s	first	check	out	the	“Graph”	tab:

You’ll	see	that	this	graph	closely	matches	what	we	diagrammed	out	earlier.	Our
transformation	operations	flow	into	the	update	block,	which	then	feeds	into	both	the
summary	and	variable	name	scopes.	The	main	difference	between	this	and	our	diagram	is
the	“global_ops”	name	scope,	which	contains	operations	that	aren’t	critical	to	the	primary
transformation	computation.

You	can	expand	the	various	blocks	to	get	a	more	granular	look	at	their	structure:



Now	we	can	see	the	separation	of	our	input,	the	intermediate	layer,	and	the	output.	It
might	be	overkill	on	a	simple	model	like	this,	but	this	sort	of	compartmentalization	is
extremely	useful.	Feel	free	to	explore	the	rest	of	the	graph.	When	you’re	ready,	head	over
to	the	“Events”	page.

When	you	open	up	the	“Events”	page,	you	should	see	three	collapsed	tabs,	named	based
on	the	tags	we	gave	our	scalar_summary	objects	above.	By	clicking	on	any	of	them,	you’ll	see
a	nice	line	chart	showing	the	values	we	stored	at	various	time	steps.	If	you	click	the	blue
rectangle	at	the	bottom	left	of	the	charts,	they’ll	expand	to	look	like	the	image	above.

Definitely	check	out	the	results	of	your	summaries,	compare	them,	make	sure	that	they
make	sense,	and	pat	yourself	on	the	back!	That	concludes	this	exercise-	hopefully	by	now
you	have	a	good	sense	of	how	to	create	TensorFlow	graphs	based	on	visual	sketches,	as
well	as	how	to	do	some	basic	summaries	with	TensorBoard.



The	entirety	of	the	code	for	this	exercise	is	below:
import	tensorflow	as	tf

#	Explicitly	create	a	Graph	object

graph	=	tf.Graph()

with	graph.as_default():

				with	tf.name_scope("variables"):

								#	Variable	to	keep	track	of	how	many	times	the	graph	has	been	run

								global_step	=	tf.Variable(0,	dtype=tf.int32,	trainable=False,	name="global_step")

								#	Variable	that	keeps	track	of	the	sum	of	all	output	values	over	time:

								total_output	=	tf.Variable(0.0,	dtype=tf.float32,	trainable=False,	name="total_output")

				#	Primary	transformation	Operations

				with	tf.name_scope("transformation"):

								#	Separate	input	layer

								with	tf.name_scope("input"):

												#	Create	input	placeholder-	takes	in	a	Vector

												a	=	tf.placeholder(tf.float32,	shape=[None],	name="input_placeholder_a")

								#	Separate	middle	layer

								with	tf.name_scope("intermediate_layer"):

												b	=	tf.reduce_prod(a,	name="product_b")

												c	=	tf.reduce_sum(a,	name="sum_c")

								#	Separate	output	layer

								with	tf.name_scope("output"):

												output	=	tf.add(b,	c,	name="output")

				with	tf.name_scope("update"):

								#	Increments	the	total_output	Variable	by	the	latest	output

								update_total	=	total_output.assign_add(output)

								#	Increments	the	above	`global_step`	Variable,	should	be	run	whenever	the	graph	is	run

								increment_step	=	global_step.assign_add(1)

				#	Summary	Operations

				with	tf.name_scope("summaries"):

								avg	=	tf.div(update_total,	tf.cast(increment_step,	tf.float32),	name="average")

								#	Creates	summaries	for	output	node

								tf.scalar_summary(b'Output',	output,	name="output_summary")

								tf.scalar_summary(b'Sum	of	outputs	over	time',	update_total,	name="total_summary")

								tf.scalar_summary(b'Average	of	outputs	over	time',	avg,	name="average_summary")

				#	Global	Variables	and	Operations

				with	tf.name_scope("global_ops"):

								#	Initialization	Op

								init	=	tf.initialize_all_variables()

								#	Merge	all	summaries	into	one	Operation

								merged_summaries	=	tf.merge_all_summaries()

#	Start	a	Session,	using	the	explicitly	created	Graph

sess	=	tf.Session(graph=graph)

#	Open	a	SummaryWriter	to	save	summaries

writer	=	tf.train.SummaryWriter('./improved_graph',	graph)

#	Initialize	Variables

sess.run(init)

def	run_graph(input_tensor):

				"""

				Helper	function;	runs	the	graph	with	given	input	tensor	and	saves	summaries

				"""

				feed_dict	=	{a:	input_tensor}

				_,	step,	summary	=	sess.run([output,	increment_step,	merged_summaries],

																																		feed_dict=feed_dict)

				writer.add_summary(summary,	global_step=step)

#	Run	the	graph	with	various	inputs



run_graph([2,8])

run_graph([3,1,3,3])

run_graph([8])

run_graph([1,2,3])

run_graph([11,4])

run_graph([4,1])

run_graph([7,3,1])

run_graph([6,3])

run_graph([0,2])

run_graph([4,5,6])

#	Write	the	summaries	to	disk

writer.flush()

#	Close	the	SummaryWriter

writer.close()

#	Close	the	session

sess.close()



Conclusion

That	wraps	up	this	chapter!	There	was	a	lot	of	information	to	absorb,	and	you	should
definitely	play	around	with	TensorFlow	now	that	you	have	a	grasp	of	the	fundamentals.
Get	yourself	fluent	with	Operations,	Variables,	and	Sessions,	and	embed	the	basic	loop	of
building	and	running	graphs	into	your	head.

Using	TensorFlow	for	simple	math	problems	is	fun	(for	some	people),	but	we	haven’t
even	touched	on	the	primary	use	case	for	the	library	yet:	machine	learning.	In	the	next
chapter,	you’ll	be	introduced	to	some	of	the	core	concepts	and	techniques	for	machine
learning	and	how	to	use	them	inside	of	TensorFlow.





Chapter	4.	Machine	Learning	Basics
Now	that	we	covered	the	basics	about	how	Tensorflow	works,	we	are	ready	to	talk

about	its	main	usage:	machine	learning.

We	are	going	to	present	high	level	notions	of	basic	machine	learning	topics	along	with
code	snippets,	showing	how	we	work	with	them	in	Tensorflow.



Supervised	learning	introduction

In	this	book	we	will	focus	on	supervised	learning	problems,	where	we	train	an
inference	model	with	an	input	dataset,	along	with	the	real	or	expected	output	for	each
example.	The	model	will	cover	a	dataset	and	then	be	able	to	predict	the	output	for	new
inputs	that	don’t	exist	in	the	original	training	dataset.

An	inference	model	is	a	series	of	mathematical	operations	that	we	apply	to	our	data.
The	steps	are	set	by	code	and	determined	by	the	model	we	are	using	to	solve	a	given
problem.	The	operations	composing	our	model	are	fixed.	Inside	the	operations	we	have
arbitrary	values,	like	“multiply	by	3”	or	“add	2.”	These	values	are	the	parameters	of	the
model,	and	are	the	ones	that	change	through	training	in	order	for	the	model	to	learn	and
adjust	its	output.

Although	the	inference	models	may	vary	significantly	in	the	number	of	operations	they
use,	and	in	the	way	they	combine	and	the	number	of	parameters	they	have;	we	always
apply	the	same	general	structure	for	training	them:

We	create	a	training	loop	that:

Initializes	the	model	parameters	for	the	first	time.	Usually	we	use	random	values	for
this,	but	in	simple	models	we	may	just	set	zeros.
Reads	the	training	data	along	with	the	expected	output	data	for	each	data	example.
Usual	operations	here	may	also	imply	randomizing	the	order	of	the	data	for	always
feeding	it	differently	to	the	model.
Executes	the	inference	model	on	the	training	data,	so	it	calculates	for	each	training
input	example	the	output	with	the	current	model	parameters.
Computes	the	loss.	The	loss	is	a	single	value	that	will	summarize	and	indicate	to	our
model	how	far	are	the	values	that	computed	in	the	last	step	with	the	expected	output
from	the	training	set.	There	are	different	loss	functions	that	you	can	use	and	are
present	in	the	book.
Adjusts	the	model	parameters.	This	is	where	the	learning	actually	takes	place.	Given
the	loss	function,	learning	is	just	a	matter	of	improving	the	values	of	the	parameters



in	order	to	minimize	the	loss	through	a	number	of	training	steps.	Most	commonly,
you	can	use	a	gradient	descent	algorithm	for	this,	which	we	will	explain	in	the
following	section.

The	loop	repeats	this	process	through	a	number	of	cycles,	according	to	the	learning	rate
that	we	need	to	apply,	and	depending	on	the	model	and	data	we	input	to	it.

After	training,	we	apply	an	evaluation	phase;	where	we	execute	the	inference	against	a
different	set	data	to	which	we	also	have	the	expected	output,	and	evaluate	the	loss	for	it.
Given	how	this	dataset	contains	examples	unknown	for	the	model,	the	evaluation	tells	you
how	well	the	model	predicts	beyond	its	training.	A	very	common	practice	is	to	take	the
original	dataset	and	randomly	split	it	in	70%	of	the	examples	for	training,	and	30%	for
evaluation.

Let’s	use	this	structure	to	define	some	generic	scaffolding	for	the	model	code.
import	tensorflow	as	tf

#	initialize	variables/model	parameters

#	define	the	training	loop	operations

def	inference(X):

				#	compute	inference	model	over	data	X	and	return	the	result

def	loss(X,	Y):

				#	compute	loss	over	training	data	X	and	expected	outputs	Y

def	inputs():

				#	read/generate	input	training	data	X	and	expected	outputs	Y

def	train(total_loss):

				#	train	/	adjust	model	parameters	according	to	computed	total	loss

def	evaluate(sess,	X,	Y):

				#	evaluate	the	resulting	trained	model

#	Launch	the	graph	in	a	session,	setup	boilerplate

with	tf.Session()	as	sess:

				tf.initialize_all_variables().run()

				X,	Y	=	inputs()

				total_loss	=	loss(X,	Y)

				train_op	=	train(total_loss)

				coord	=	tf.train.Coordinator()

				threads	=	tf.train.start_queue_runners(sess=sess,	coord=coord)

				#	actual	training	loop

				training_steps	=	1000

				for	step	in	range(training_steps):

								sess.run([train_op])

								#	for	debugging	and	learning	purposes,	see	how	the	loss	gets	decremented	thru	training	steps

								if	step	%	10	==	0:

												print	"loss:	",	sess.run([total_loss])

				evaluate(sess,	X,	Y)

				coord.request_stop()

				coord.join(threads)

				sess.close()

This	is	the	basic	shape	for	an	inference	model	code.	First	it	initializes	the	model
parameters.	Then	it	defines	a	method	for	each	of	the	training	loop	operations:	read	input
training	data	(inputs	method),	compute	inference	model	(inference	method),	calculate	loss



over	expected	output	(loss	method),	adjust	model	parameters	(train	method),	evaluate	the
resulting	model	(evaluate	method),	and	then	the	boilerplate	code	to	start	a	session	and	run
the	training	loop.	In	the	following	sections	we	will	fill	these	template	methods	with
required	code	for	each	type	of	inference	model.

Once	you	are	happy	with	how	the	model	responds,	you	can	focus	on	exporting	it	and
serving	it	to	run	inference	against	the	data	you	need	to	work	with.



Saving	training	checkpoints

As	we	stated	above,	training	models	implies	updating	their	parameters,	or	variables	in
Tensorflow	lingo,	through	many	training	cycles.	Variables	are	stored	in	memory,	so	if	the
computer	would	lose	power	after	many	hours	of	training,	we	would	lose	all	of	that	work.
Luckily,	there	is	the	tf.train.Saver	class	to	save	the	graph	variables	in	propietary	binary
files.	We	should	periodically	save	the	variables,	create	a	checkpoint	file,	and	eventually
restore	the	training	from	the	most	recent	checkpoint	if	needed.

In	order	to	use	the	Saver	we	need	to	slighly	change	the	training	loop	scaffolding	code:
#	model	definition	code…

#	Create	a	saver.

saver	=	tf.train.Saver()

#	Launch	the	graph	in	a	session,	setup	boilerplate

with	tf.Session()	as	sess:

				#	model	setup….

				#	actual	training	loop

				for	step	in	range(training_steps):

								sess.run([train_op])

								if	step	%	1000	==	0:

												saver.save(sess,	'my-model',	global_step=step)

				#	evaluation…

				saver.save(sess,	'my-model',	global_step=training_steps)

				sess.close()

In	the	code	above	we	instatiate	a	saver	before	opening	the	session,	inserting	code	inside
the	training	loop	to	call	the	tf.train.Saver.save	method	for	each	1000	training	steps,	along
with	the	final	step	when	the	training	loop	finishes.	Each	call	will	create	a	checkpoint	file
with	the	name	template	my-model-{step}	like	my-model-1000,	my-model-2000,	etc.	The	file	stores	the
current	values	of	each	variable.	By	default	the	saver	will	keep	only	the	most	recent	5	files
and	delete	the	rest.

If	we	wish	to	recover	the	training	from	a	certain	point,	we	should	use	the
tf.train.get_checkpoint_state	method,	which	will	verify	if	we	already	have	a	checkpoint
saved,	and	the	tf.train.Saver.restore	method	to	recover	the	variable	values.
with	tf.Session()	as	sess:

				#	model	setup….

				initial_step	=	0

				#	verify	if	we	don't	have	a	checkpoint	saved	already

				ckpt	=	tf.train.get_checkpoint_state(os.path.dirname(__file__))

				if	ckpt	and	ckpt.model_checkpoint_path:

								#	Restores	from	checkpoint

								saver.restore(sess,	ckpt.model_checkpoint_path)

								initial_step	=	int(ckpt.model_checkpoint_path.rsplit('-',	1)[1])

				#actual	training	loop

				for	step	in	range(initial_step,	training_steps):

							...

In	the	code	above	we	check	first	if	we	have	a	checkpoint	file,	and	then	restore	the



variable	values	before	staring	the	training	loop.	We	also	recover	the	global	step	number
from	the	checkpoint	file	name.

Now	that	we	know	how	supervised	learning	works	in	general,	as	well	as	how	to	store
our	training	progress,	let’s	move	on	to	explain	some	inference	models.



Linear	regression

Linear	regression	is	the	simplest	form	of	modeling	for	a	supervised	learning	problem.
Given	a	set	of	data	points	as	training	data,	you	are	going	to	find	the	linear	function	that
best	fits	them.	In	a	2-dimensional	dataset,	this	type	of	function	represents	a	straight	line.

Here	is	the	charting	of	the	lineal	regression	model	in	2D.	Blue	dots	are	the	training	data
points	and	the	red	line	is	the	what	the	model	will	infer.

Let’s	begin	with	a	bit	of	math	to	explain	how	the	model	will	work.	The	general	formula
of	a	linear	function	is:

And	its	matrix	(or	tensor)	form:

	is	the	value	we	are	trying	to	predict.
	independent	or	predictor	variables	are	the	values	that	we	provide	when

using	our	model	for	predicting	new	values.	In	matrix	form,	you	can	provide	multiple
examples	at	once-	one	per	row.

	are	the	parameters	the	model	will	learn	from	the	training	data,	or	the
“weights”	given	to	each	variable.
	is	also	a	learned	parameter-	the	constant	of	the	linear	function	that	is	also	known	as

the	bias	of	the	model.

Let’s	represent	this	model	in	code.	Instead	of	transposing	weights,	we	can	simply	define
them	as	a	single	column	vector.
#	initialize	variables/model	parameters



W	=	tf.Variable(tf.zeros([2,	1]),	name="weights")

b	=	tf.Variable(0.,	name="bias")

def	inference(X):

				return	tf.matmul(X,	W)	+	b

Now	we	have	to	define	how	to	compute	the	loss.	For	this	simple	model	we	will	use	a
squared	error,	which	sums	the	squared	difference	of	all	the	predicted	values	for	each
training	example	with	their	corresponding	expected	values.	Algebraically	it	is	the	squared
euclidean	distance	between	the	predicted	output	vector	and	the	expected	one.	Graphically
in	a	2d	dataset	is	the	length	of	the	vertical	line	that	you	can	trace	from	the	expected	data
point	to	the	predicted	regression	line.	It	is	also	known	as	L2	norm	or	L2	loss	function.	We
use	it	squared	to	avoid	computing	the	square	root,	since	it	makes	no	difference	for	trying
to	minimize	the	loss	and	saves	us	a	computing	step.

We	sum	over	 ,	where	 	is	each	data	example.	In	code:
def	loss(X,	Y):

				Y_predicted	=	inference(X)

				return	tf.reduce_sum(tf.squared_difference(Y,	Y_predicted))

It’s	now	time	to	actually	train	our	model	with	data.	As	an	example,	we	are	going	to
work	with	a	dataset	that	relates	age	in	years	and	weight	in	kilograms	with	blood	fat
content	(http://people.sc.fsu.edu/~jburkardt/datasets/regression/x09.txt).

As	the	dataset	is	short	enough	for	our	example,	we	are	just	going	to	embed	it	in	our
code.	In	the	following	section	we	will	show	how	to	deal	with	reading	the	training	data
from	files,	like	you	would	in	a	real	world	scenario.
def	inputs():

				weight_age	=	[[84,	46],	[73,	20],	[65,	52],	[70,	30],	[76,	57],	[69,	25],	[63,	28],	[72,	36],	[79

				blood_fat_content	=	[354,	190,	405,	263,	451,	302,	288,	385,	402,	365,	209,	290,	346,	254,	395,	

				return	tf.to_float(weight_age),	tf.to_float(blood_fat_content)

And	now	we	define	the	model	training	operation.	We	will	use	the	gradient	descent
algorithm	for	optimizing	the	model	parameters,	which	we	describe	in	the	following
section.
def	train(total_loss):

				learning_rate	=	0.0000001

				return	tf.train.GradientDescentOptimizer(learning_rate).minimize(total_loss)

When	you	run	it,	you	will	see	printed	how	the	loss	gets	smaller	on	each	training	step.

Now	that	we	trained	the	model,	it’s	time	to	evaluate	it.	Let’s	compute	the	expected
blood	fat	for	a	25	year	old	person	who	weighs	80	kilograms.	This	is	not	originally	in	the
source	data,	but	we	will	compare	it	with	another	person	with	the	same	age	who	weighs	65
kilograms:

http://people.sc.fsu.edu/~jburkardt/datasets/regression/x09.txt


def	evaluate(sess,	X,	Y):

				print	sess.run(inference([[80.,	25.]]))	#	~	303

				print	sess.run(inference([[65.,	25.]]))	#	~	256

As	a	quick	evaluation,	you	can	check	that	the	model	learned	how	the	blood	fat	decays
with	weight,	and	the	output	values	are	in	between	the	boundaries	of	the	original	trained
values.



Logistic	regression

The	linear	regression	model	predicts	a	continuous	value,	or	any	real	number.	Now	we
are	going	to	present	a	model	that	can	answer	a	yes-no	type	of	question,	like	“Is	this	email
spam?”

There	is	a	function	used	commonly	in	machine	learning	called	the	logistic	function.	It
is	also	known	as	the	sigmoid	function,	because	its	shape	is	an	S	(and	sigma	is	the	greek
letter	equivalent	to	s).

Here	you	see	the	charting	of	a	logistic/sigmoid	function,	with	its	“S”	shape.

The	logistic	function	is	a	probability	distribution	function	that,	given	a	specific	input
value,	computes	the	probability	of	the	output	being	a	success,	and	thus	the	probability	for
the	answer	to	the	question	to	be	“yes.”

This	function	takes	a	single	input	value.	In	order	to	feed	the	function	with	the	multiple
dimensions,	or	features	from	the	examples	of	our	training	datasets,	we	need	to	combine
them	into	a	single	value.	We	can	use	the	linear	regression	model	expression	for	doing	this,
like	we	did	in	the	section	above.

To	express	it	in	code,	you	can	reuse	all	of	the	elements	of	the	linear	model,	however,
you	just	slightly	change	the	prediction	to	apply	the	sigmoid.



#	same	params	and	variables	initialization	as	log	reg.

W	=	tf.Variable(tf.zeros([5,	1]),	name="weights")

b	=	tf.Variable(0.,	name="bias")

#	former	inference	is	now	used	for	combining	inputs

def	combine_inputs(X):

				return	tf.matmul(X,	W)	+	b

#	new	inferred	value	is	the	sigmoid	applied	to	the	former

def	inference(X):

				return	tf.sigmoid(combine_inputs(X))

Now	let’s	focus	on	the	loss	function	for	this	model.	We	could	use	the	squared	error.	The
logistic	function	computes	the	probability	of	the	answer	being	“yes.”	In	the	training	set,	a
“yes”	answer	should	represent	100%	of	probability,	or	simply	the	output	value	to	be	1.
Then	the	loss	should	be	how	much	probability	our	model	assigned	less	than	1	for	that
particular	example,	squared.	Consequently,	a	“no”	answer	will	represent	0	probability,
hence	the	loss	is	any	probability	the	model	assigned	for	that	example,	and	again	squared.

Consider	an	example	where	the	expected	answer	is	“yes”	and	the	model	is	predicting	a
very	low	probability	for	it,	close	to	0.	This	means	that	it	is	close	to	100%	sure	that	the
answer	is	“no.”

The	squared	error	penalizes	such	a	case	with	the	same	order	of	magnitude	for	the	loss	as
if	the	probability	would	have	been	predicted	as	20,	30,	or	even	50%	for	the	“no”	output.

There	is	a	loss	function	that	works	better	for	this	type	of	problem,	which	is	the	cross
entropy	function.

We	can	visually	compare	the	behavior	of	both	loss	functions	according	to	the	predicted
output	for	a	“yes.”

The	cross	entropy	and	squared	error	(L2)	functions	are	charted	together.	Cross	entropy
outputs	a	much	greater	value	(“penalizes”),	because	the	output	is	farther	from	what	is



expected.

With	cross	entropy,	as	the	predicted	probability	comes	closer	to	0	for	the	“yes”
example,	the	penalty	increases	closer	to	infinity.	This	makes	it	impossible	for	the	model	to
make	that	misprediction	after	training.	That	makes	the	cross	entropy	better	suited	as	a	loss
function	for	this	model.

There	is	a	Tensorflow	method	for	calculating	cross	entropy	directly	for	a	sigmoid	output
in	a	single,	optimized	step:
def	loss(X,	Y):

				return	tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(combine_inputs(X),	Y))

What	“cross-entropy”	means
In	information	theory,	Shannon	entropy	allows	to	estimate	the	average	minimum	number	of	bits	needed	to	encode
a	symbol	 	from	a	string	of	symbols,	based	on	the	probability	 	of	each	symbol	to	appear	in	that	string.

You	can	actually	link	this	entropy	with	the	thermodynamics	concept	of	entropy,	in	addition	to	their	math
expressions	being	analogous.

For	instance,	let’s	calculate	the	entropy	for	the	word	“HELLO.”

So	you	need	2	bits	per	symbol	to	encode	“HELLO”	in	the	optimal	encoding.

If	you	encode	the	symbols	assuming	any	other	probability	for	the	 	than	the	real	 	need	more	bits	for	encoding
each	symbol.	That’s	where	cross-entropy	comes	to	play.	It	allows	you	to	calculate	the	average	minimum	number
of	bits	needed	to	encode	the	same	string	in	another	suboptimal	encoding.

For	example,	ASCII	assigns	the	uniform	probability	 	for	all	its	symbols.	Let’s	calculate	the
cross-entropy	for	the	word	“HELLO”	in	ASCII	encoding.



So,	you	need	8	bits	per	symbol	to	encode	“HELLO”	in	ASCII,	as	you	would	have	expected.

As	a	loss	function,	consider	 	to	be	expected	training	output	and	distribution	probability	(“encoding”),	where	the
actual	value	has	100%	and	any	other	0.	And	use	 	as	the	model	calculated	output.	Remember	that	the	sigmoid
function	computes	a	probability.

It	is	a	theorem	that	cross	entropy	is	at	its	minimum	when	 .	Thus,	you	can	use	cross	entropy	to	compare
how	a	distribution	“fits”	another.	The	closer	the	cross	entropy	is	to	the	entropy,	the	better	 	is	an	approximation
of	 .	Then	effectively,	cross-entropy	reduces	as	the	model	better	resembles	the	expected	output,	like	you	need	in
a	loss	function.

We	can	freely	exchange	 	with	 	for	minimizing	the	entropy	as	you	switch	one	to	another	by
multiplying	by	the	change	of	the	base	constant.

Now	let’s	apply	the	model	to	some	data.	We	are	going	to	use	the	Titanic	survivor
Kaggle	contest	dataset	from	https://www.kaggle.com/c/titanic/data.

The	model	will	have	to	infer,	based	on	the	passenger	age,	sex	and	ticket	class	if	the
passenger	survived	or	not.

To	make	it	a	bit	more	interesting,	let’s	use	data	from	a	file	this	time.	Go	ahead	and
download	the	train.csv	file.

Here	are	the	code	basics	for	reading	the	file.	This	is	a	new	method	for	our	scaffolding.
You	can	load	and	parse	it,	and	create	a	batch	to	read	many	rows	packed	in	a	single	tensor
for	computing	the	inference	efficiently.
def	read_csv(batch_size,	file_name,	record_defaults):

				filename_queue	=	tf.train.string_input_producer([os.path.dirname(__file__)	+	"/"	+	file_name])

				reader	=	tf.TextLineReader(skip_header_lines=1)

				key,	value	=	reader.read(filename_queue)

				#	decode_csv	will	convert	a	Tensor	from	type	string	(the	text	line)	in

				#	a	tuple	of	tensor	columns	with	the	specified	defaults,	which	also

				#	sets	the	data	type	for	each	column

				decoded	=	tf.decode_csv(value,	record_defaults=record_defaults)

				#	batch	actually	reads	the	file	and	loads	"batch_size"	rows	in	a	single	tensor

				return	tf.train.shuffle_batch(decoded,

																																		batch_size=batch_size,

																																		capacity=batch_size	*	50,

																																		min_after_dequeue=batch_size)

You	have	to	use	categorical	data	from	this	dataset.	Ticket	class	and	gender	are	string
features	with	a	predefined	possible	set	of	values	that	they	can	take.	To	use	them	in	the
inference	model	we	need	to	convert	them	to	numbers.	A	naive	approach	might	be
assigning	a	number	for	each	possible	value.	For	instance,	you	can	use	“1”	for	first	ticket
class,	“2”	for	second,	and	“3”	for	third.	Yet	that	forces	the	values	to	have	a	lineal

https://www.kaggle.com/c/titanic/data


relationship	between	them	that	doesn’t	really	exist.	You	can’t	say	that	“third	class	is	3
times	first	class”.	Instead	you	should	expand	each	categorical	feature	to	N	boolean
features,	or	one	for	each	possible	value	of	the	original.	This	allows	the	model	to	learn	the
importance	of	each	possible	value	independently.	In	our	example	data,	“first	class”	should
have	greater	probability	of	survival	than	others.

When	working	with	categorical	data,	convert	it	to	multiple	boolean	features,	one	for
each	possible	value.	This	allows	the	model	to	weight	each	possible	value	separately.

In	the	case	of	categories	with	only	two	possible	values,	like	the	gender	in	the	dataset,	it
is	enough	to	have	a	single	variable	for	it.	That’s	because	you	can	express	a	linear
relationship	between	the	values.	For	instance	if	possible	values	are	female	=	1	and	male	=	0,
then	male	=	1	-	female,	a	single	weight	can	learn	to	represent	both	possible	states.
def	inputs():

				passenger_id,	survived,	pclass,	name,	sex,	age,	sibsp,	parch,	ticket,	fare,	cabin,	embarked	=	\

								read_csv(100,	"train.csv",	[[0.0],	[0.0],	[0],	[""],	[""],	[0.0],	[0.0],	[0.0],	[""],	[0.0],

				#	convert	categorical	data

				is_first_class	=	tf.to_float(tf.equal(pclass,	[1]))

				is_second_class	=	tf.to_float(tf.equal(pclass,	[2]))

				is_third_class	=	tf.to_float(tf.equal(pclass,	[3]))

				gender	=	tf.to_float(tf.equal(sex,	["female"]))

				#	Finally	we	pack	all	the	features	in	a	single	matrix;

				#	We	then	transpose	to	have	a	matrix	with	one	example	per	row	and	one	feature	per	column.

				features	=	tf.transpose(tf.pack([is_first_class,	is_second_class,	is_third_class,	gender,	age]))

				survived	=	tf.reshape(survived,	[100,	1])

				return	features,	survived

In	the	code	above	we	define	our	inputs	as	calling	read_csv	and	converting	the	data.	To
convert	to	boolean,	we	use	the	tf.equal	method	to	compare	equality	to	a	certain	constant
value.	We	also	have	to	convert	the	boolean	back	to	a	number	to	apply	inference	with
tf.to_float.	We	then	pack	all	the	booleans	in	a	single	tensor	with	tf.pack.

Finally,	lets	train	our	model.
def	train(total_loss):

				learning_rate	=	0.01

				return	tf.train.GradientDescentOptimizer(learning_rate).minimize(total_loss)

To	evaluate	the	results	we	are	going	to	run	the	inference	against	a	batch	of	the	training
set	and	count	the	number	of	examples	that	were	correctly	predicted.	We	call	that
measuring	the	accuracy.
def	evaluate(sess,	X,	Y):

				predicted	=	tf.cast(inference(X)	>	0.5,	tf.float32)

				print	sess.run(tf.reduce_mean(tf.cast(tf.equal(predicted,	Y),	tf.float32)))

As	the	model	computes	a	probability	of	the	answer	being	yes,	we	convert	that	to	a
positive	answer	if	the	output	for	an	example	is	greater	than	0.5.	Then	we	compare	equality
with	the	actual	value	using	tf.equal.	Finally,	we	use	tf.reduce_mean,	which	counts	all	of	the
correct	answers	(as	each	of	them	adds	1)	and	divides	by	the	total	number	of	samples	in	the
batch,	which	calculates	the	percentage	of	right	answers.



If	you	run	the	code	above	you	should	get	around	80%	of	accuracy,	which	is	a	good
number	for	the	simplicity	of	this	model.



Softmax	classification

With	logistic	regression	we	were	able	to	model	the	answer	to	the	yes-no	question.	Now
we	want	to	be	able	to	answer	a	multiple	choice	type	of	question	like:	“Were	you	born	in
Boston,	London,	or	Sydney?”

For	that	case	there	is	the	softmax	function,	which	is	a	generalization	of	the	logistic
regresion	for	C	possible	different	values.

It	returns	a	probability	vector	of	C	components,	filling	the	corresponding	probability	for
each	output	class.	As	it	is	a	probability,	the	sum	of	the	C	vector	components	always	equal
to	1.	That	is	because	the	formula	is	composed	such	that	every	possible	input	data	example
must	belong	to	one	output	class,	covering	the	100%	of	possible	examples.	If	the	sum
would	be	less	than	1,	it	would	imply	that	there	could	be	some	hidden	class	alternative.	If	it
would	be	more	than	1,	it	would	mean	that	each	example	could	belong	to	more	than	one
class.

You	can	proof	that	if	the	number	of	classes	is	2,	the	resulting	output	probability	is	the
same	as	a	logistic	regression	model.

Now,	to	code	this	model,	you	will	have	one	slight	change	from	the	previous	models	in
the	variable	initialization.	Given	that	our	model	computes	C	outputs	instead	of	just	one,
we	need	to	have	C	different	weight	groups,	one	for	each	possible	output.	So,	you	will	use
a	weights	matrix,	instead	of	a	weights	vector.	That	matrix	will	have	one	row	for	each	input
feature,	and	one	column	for	each	output	class.

We	are	going	to	use	the	classical	Iris	flower	dataset	for	trying	softmax.	You	can
download	it	from	https://archive.ics.uci.edu/ml/datasets/Iris	It	contains	4	data	features	and
3	possible	output	classes,	one	for	each	type	of	iris	plant,	so	our	weights	matrix	should
have	a	4x3	dimension.

The	variable	initialization	code	should	look	like:
#	this	time	weights	form	a	matrix,	not	a	vector,	with	one	"feature	weights	column"	per	output	class.

W	=	tf.Variable(tf.zeros([4,	3]),	name="weights")

#	so	do	the	biases,	one	per	output	class.

b	=	tf.Variable(tf.zeros([3],	name="bias"))

Also,	as	you	would	expect,	Tensorflow	contains	an	embedded	implementation	of	the
softmax	function.
def	inference(X):

				return	tf.nn.softmax(combine_inputs(X))

Regarding	loss	computation,	the	same	considerations	for	logistic	regression	apply	for

https://archive.ics.uci.edu/ml/datasets/Iris


fitting	a	candidate	loss	function,	as	the	output	here	is	also	a	probability.	We	are	going	to
use	then	cross-entropy	again,	adapted	for	multiple	classes	in	the	computed	probability.

For	a	single	training	example	 ,	cross	entropy	now	becomes:

Summing	the	loss	for	each	output	class	on	that	training	example.	Note	that	 	would
equal	1	for	the	expected	class	of	the	training	example	and	0	for	the	rest,	so	only	one	loss
value	is	actually	summed,	the	one	measuring	how	far	the	model	predicted	the	probability
for	the	true	class.

Now	to	calculate	the	total	loss	among	the	training	set,	we	sum	the	loss	for	each	training
example:

In	code,	there	are	two	versions	implemented	in	Tensorflow	for	the	softmax	cross-
entropy	function:	one	specially	optimized	for	training	sets	with	a	single	class	value	per
example.	For	example,	our	training	data	may	have	a	class	value	that	could	be	either	“dog”,
“person”	or	“tree”.	That	function	is	tf.nn.sparse_softmax_cross_entropy_with_logits.
def	loss(X,	Y):

				return	tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(combine_inputs(X),	Y))

The	other	version	of	it	lets	you	work	with	training	sets	containing	the	probabilities	of
each	example	to	belong	to	every	class.	For	instance,	you	could	use	training	data	like	“60%
of	the	asked	people	consider	that	this	picture	is	about	dogs,	25%	about	trees,	and	the	rest
about	a	person”.	That	function	is	tf.nn.softmax_cross_entropy_with_logits.	You	may	need	such
a	function	with	some	real	world	usages,	but	we	won’t	need	it	for	our	simple	examples.	The
sparse	version	is	preferred	when	possible	because	it	is	faster	to	compute.	Note	that	the
final	output	of	the	model	will	always	be	one	single	class	value,	and	this	version	is	just	to
support	a	more	flexible	training	data.

Let’s	define	our	input	method.	We	will	reuse	the	read_csv	function	from	the	logistic
regression	example,	but	will	call	it	with	the	defaults	for	the	values	on	our	dataset,	which
are	all	numeric.
def	inputs():

				sepal_length,	sepal_width,	petal_length,	petal_width,	label	=\

								read_csv(100,	"iris.data",	[[0.0],	[0.0],	[0.0],	[0.0],	[""]])

				#	convert	class	names	to	a	0	based	class	index.

				label_number	=	tf.to_int32(tf.argmax(tf.to_int32(tf.pack([

								tf.equal(label,	["Iris-setosa"]),

								tf.equal(label,	["Iris-versicolor"]),

								tf.equal(label,	["Iris-virginica"])



				])),	0))

				#	Pack	all	the	features	that	we	care	about	in	a	single	matrix;

				#	We	then	transpose	to	have	a	matrix	with	one	example	per	row	and	one	feature	per	column.

				features	=	tf.transpose(tf.pack([sepal_length,	sepal_width,	petal_length,	petal_width]))

				return	features,	label_number

We	don’t	need	to	convert	each	class	to	its	own	variable	to	use	with
sparse_softmax_cross_entropy_with_logits,	but	we	need	the	value	to	be	a	number	in	the	range	of
0..2,	since	we	have	3	possible	classes.	In	the	dataset	file	the	class	is	a	string	value	from	the
possible	“Iris-setosa”,	“Iris-versicolor”,	or	“Iris-virginica”.	To	convert	it	we	create	a	tensor
with	tf.pack,	comparing	the	file	input	with	each	possible	value	using	tf.equal.	Then	we	use
tf.argmax	to	find	the	position	on	that	tensor	which	is	valued	true,	effectively	converting	the
classes	to	a	0..2	integer.

The	training	function	is	also	the	same.

For	evaluation	of	accuracy,	we	need	a	slight	change	from	the	sigmoid	version:
def	evaluate(sess,	X,	Y):

				predicted	=	tf.cast(tf.arg_max(inference(X),	1),	tf.int32)

				print	sess.run(tf.reduce_mean(tf.cast(tf.equal(predicted,	Y),	tf.float32)))

The	inference	will	compute	the	probabilities	for	each	output	class	for	our	test	examples.
We	use	the	tf.argmax	function	to	choose	the	one	with	the	highest	probability	as	the
predicted	output	value.	Finally,	we	compare	with	the	expected	class	with	tf.equal	and
apply	tf.reduce_mean	just	like	with	the	sigmoid	example.

Running	the	code	should	print	an	accuracy	of	about	96%.



Multi-layer	neural	networks

So	far	we	have	been	using	simple	neural	networks.	Both	linear	and	logistic	regression
models	are	single	neurons	that:

Do	a	weighted	sum	of	the	input	features.	Bias	can	be	considered	the	weight	of	an
input	feature	that	equals	to	1	for	every	example.	We	call	that	doing	a	linear
combination	of	the	features.
Then	apply	an	activation	or	transfer	function	to	calculate	the	output.	In	the	case	of
the	lineal	regression,	the	transfer	function	is	the	identity	(i.e.	same	value),	while	the
logistic	uses	the	sigmoid	as	the	transfer.

The	following	diagram	represents	each	neuron	inputs,	processing	and	output:

In	the	case	of	softmax	classification,	we	used	a	network	with	C	neurons-	one	for	each
possible	output	class:

Now,	in	order	to	resolve	more	difficult	tasks,	like	reading	handwritten	digits,	or	actually



identifying	cats	and	dogs	on	images,	we	are	going	to	need	a	more	developed	model.

Lets	start	with	a	simple	example.	Suppose	we	want	to	build	a	network	that	learns	how
to	fit	the	XOR	(eXclusive	OR)	boolean	operation:

Table	4-1.	XOR	operation	truth	table

Input	1 Input	2 Output

0 0 0

0 1 1

1 0 1

1 1 0

It	should	return	1	when	either	input	equals	to	1,	but	not	when	both	do.

This	seems	to	be	a	far	more	simpler	problem	that	the	ones	we	have	tried	so	far,	yet	none
of	the	models	that	we	presented	can	solve	it.

The	reason	is	that	sigmoid	type	of	neurons	require	our	data	to	be	linearly	separable	to
do	their	job	well.	That	means	that	there	must	exist	a	straight	line	in	2	dimensional	data	(or
hyperplane	in	higher	dimensional	data)	that	separates	all	the	data	examples	belonging	to	a
class	in	the	same	side	of	the	plane,	which	looks	something	like	this:

In	the	chart	we	can	see	example	data	samples	as	dots,	with	their	associated	class	as	the
color.	As	long	as	we	can	find	that	yellow	line	completely	separating	the	red	and	the	blue
dots	in	the	chart,	the	sigmoid	neuron	will	work	fine	for	that	dataset.



Let’s	look	at	the	XOR	gate	function	chart:

We	can’t	find	a	single	straight	line	that	would	split	the	chart,	leaving	all	of	the	1s	(red
dots)	in	one	side	and	0s	(blue	dots)	in	the	other.	That’s	because	the	XOR	function	output	is
not	linearly	separable.

This	problem	actually	resulted	in	neural	network	research	losing	importance	for	about	a
decade	around	1970’s.	So	how	did	they	fix	the	lack	of	linear	separability	to	keep	using
networks?	They	did	it	by	intercalating	more	neurons	between	the	input	and	the	output	of
the	network,	as	you	can	see	in	the	figure:

We	say	that	we	added	a	hidden	layer	of	neurons	between	the	input	and	the	output
layers.	You	can	think	of	it	as	allowing	our	network	to	ask	multiple	questions	to	the	input
data,	one	question	per	neuron	on	the	hidden	layer,	and	finally	deciding	the	output	result
based	on	the	answers	of	those	questions.

Graphically,	we	are	allowing	the	network	to	draw	more	than	one	single	separation	line:



As	you	can	see	in	the	chart,	each	line	divides	the	plane	for	the	first	questions	asked	to
the	input	data.	Then	you	can	leave	all	of	the	equal	outputs	grouped	together	in	a	single
area.

You	can	now	guess	what	the	deep	means	in	deep	learning.	We	make	our	networks
deeper	by	adding	more	hidden	layers	on	them.	We	may	use	different	type	of	connections
between	them	and	even	different	activation	functions	in	each	layer.

Later	in	this	book	we	present	different	types	of	deep	neural	networks	for	different	usage
scenarios.



Gradient	descent	and	backpropagation

We	cannot	close	the	chapter	about	basic	machine	learning,	without	explaining	how	the
learning	algorithm	we	have	been	using	works.

Gradient	descent	is	an	algorithm	to	find	the	points	where	a	function	achieves	its
minimum	value.	Remember	that	we	defined	learning	as	improving	the	model	parameters
in	order	to	minimize	the	loss	through	a	number	of	training	steps.	With	that	concept,
applying	gradient	decent	to	find	the	minimum	of	the	loss	function	will	result	in	our	model
learning	from	our	input	data.

Let’s	define	what	a	gradient	is,	in	case	you	don’t	know.	The	gradient	is	a	mathematical
operation,	generally	represented	with	the	 	symbol	(nabla	greek	letter).	It	is	analogous	to
a	derivative,	but	applied	to	functions	that	input	a	vector	and	output	a	single	value;	like	our
loss	functions	do.

The	output	of	the	gradient	is	a	vector	of	partial	derivatives,	one	per	position	of	the	input
vector	of	the	function.

You	should	think	about	a	partial	derivative	as	if	your	function	would	receive	only	one
single	variable,	replacing	all	of	the	others	by	constants,	and	then	applying	the	usual	single
variable	derivation	procedure.

The	partial	derivatives	measure	the	rate	of	change	of	the	function	output	with	respect	of
a	particular	input	variable.	In	other	words,	how	much	the	output	value	will	increase	if	we
increase	that	input	variable	value.

Here	is	a	caveat	before	going	on.	When	we	talk	about	input	variables	of	the	loss
function,	we	are	referring	to	the	model	weights,	not	that	actual	dataset	features	inputs.
Those	are	fixed	by	our	dataset	and	cannot	be	optimized.	The	partial	derivatives	we
calculate	are	with	respect	of	each	individual	weight	in	the	inference	model.

We	care	about	the	gradient	because	its	output	vector	indicates	the	direction	of	maximum
growth	for	the	loss	function.	You	could	think	of	it	as	a	little	arrow	that	will	indicate	in
every	point	of	the	function	where	you	should	move	to	increase	its	value:



Suppose	the	chart	above	shows	the	loss	function.	The	red	dot	represents	the	current
weight	values,	where	you	are	currently	standing.	The	gradient	represents	the	arrow,
indicating	that	you	should	go	right	to	increase	the	loss.	More	over,	the	length	of	the	arrow
indicates	conceptually	how	much	would	you	gain	if	you	move	in	that	direction.

Now,	if	we	go	the	opposite	direction	of	the	gradient,	the	loss	will	also	do	the	opposite:
decrease.

In	the	chart,	if	we	go	in	the	opposite	direction	of	the	gradient	(blue	arrow)	we	will	go	in
the	direction	of	decreasing	loss.

If	we	move	in	that	direction	and	calculate	the	gradient	again,	and	then	repeat	the
process	until	the	gradient	length	is	0,	we	will	arrive	at	the	loss	minimum.	That	is	our	goal,
and	graphically	should	look	like:



That’s	it.	We	can	simply	define	gradient	descent	algorithm	as:

Notice	how	we	added	the	 	value	to	scale	the	gradient.	We	call	it	the	learning	rate.	We
need	to	add	that	because	the	length	of	the	gradient	vector	is	actually	an	amount	measured
in	the	“loss	function	units,”	not	in	“weight	units,”	so	we	need	to	scale	the	gradient	to	be
able	to	add	it	to	our	weights.

The	learning	rate	is	not	a	value	that	model	will	infer.	It	is	an	hyperparameter,	or	a
manually	configurable	setting	for	our	model.	We	need	to	figure	out	the	right	value	for	it.	If
it	is	too	small	then	it	will	take	many	learning	cycles	to	find	the	loss	minimum.	If	it	is	too
large,	the	algorithm	may	simply	“skip	over”	the	minimum	and	never	find	it,	jumping
cyclically.	That’s	known	as	overshooting.	In	our	example	loss	function	chart,	it	would
look	like:

In	practice,	we	can’t	really	plot	the	loss	function	because	it	has	many	variables.	So	to
know	that	we	are	trapped	in	overshooting,	we	have	to	look	at	the	plot	of	the	computed
total	loss	thru	time,	which	we	can	get	in	Tensorboard	by	using	a	tf.scalar_summary	on	the
loss.



This	is	how	a	well	behaving	loss	should	diminish	through	time,	indicating	a	good
learning	rate:

The	blue	line	is	the	Tensorboard	chart,	and	the	red	one	represents	the	tendency	line	of
the	loss.

This	is	what	it	looks	like	when	it	is	overshooting:

You	should	play	with	adjusting	the	learning	rate	so	it	is	small	enough	that	it	doesn’t
overshoot,	but	is	large	enough	to	get	it	decaying	quickly,	so	you	can	achieve	learning
faster	using	less	cycles.

Besides	the	learning	rate,	other	issues	affect	the	gradient	descent	in	the	algorithm.	The
presence	of	local	optima	is	in	the	loss	function.	Going	back	to	the	toy	example	loss
function	plot,	this	is	how	the	algorithm	would	work	if	we	had	our	initial	weights	close	to
the	right	side	“valley”	of	the	loss	function:



The	algorithm	will	find	the	valley	and	then	stop	because	it	will	think	that	it	is	where	the
best	possible	value	is	located.	The	gradient	is	valued	at	0	in	all	minima.	The	algorithm
can’t	distinguish	if	it	stopped	in	the	absolute	minimum	of	the	function,	the	global
minimum,	or	a	local	minimum	that	is	the	best	value	only	in	the	close	neighborhood.

We	try	to	fight	against	it	by	initializing	the	weights	with	random	values.	Remember	that
the	first	value	for	the	weights	is	set	manually.	By	using	random	values,	we	improve	the
chance	to	start	descending	closer	from	the	global	minimum.

In	a	deep	network	context	like	the	ones	we	will	see	in	later	chapters,	local	minima	are
very	frequent.	A	simple	way	to	explain	this	is	to	think	about	how	the	same	input	can	travel
many	different	paths	to	the	output,	thus	generating	the	same	outcome.	Luckily,	there	are
papers	showing	that	all	of	those	minima	are	closely	equivalent	in	terms	of	loss,	and	they
are	not	really	much	worse	than	the	global	minimum.

So	far	we	haven’t	been	explicitly	calculating	any	derivatives	here,	because	we	didn’t
have	to.	Tensorflow	includes	the	method	tf.gradients	to	symbolically	computate	the
gradients	of	the	specified	graph	steps	and	output	that	as	tensors.	We	don’t	even	need	to
manually	call,	because	it	also	includes	implementations	of	the	gradient	descent	algorithm,
among	others.	That	is	why	we	present	high	level	formulas	on	how	things	should	work
without	requiring	us	to	go	in-depth	with	implementation	details	and	the	math.

We	are	going	to	present	through	backpropagation.	It	is	a	technique	used	for	efficiently
computing	the	gradient	in	a	computational	graph.

Let’s	assume	a	really	simply	network,	with	one	input,	one	output,	and	two	hidden	layers
with	a	single	neuron.	Both	hidden	and	output	neurons	will	be	sigmoids	and	the	loss	will	be
calculated	using	cross	entropy.	Such	a	network	should	look	like:



Let’s	define	 	as	the	output	of	first	hidden	layer,	 	the	output	of	the	second,	and	
	the	final	output	of	the	network:

Finally,	the	loss	of	the	network	will	be:

To	run	one	step	of	gradient	decent,	we	need	to	calcuate	the	partial	derivatives	of	the	loss
function	with	respect	of	the	three	weights	in	the	network.	We	will	start	from	the	output
layer	weights,	applying	the	chain	rule:

	is	just	a	constant	for	this	case	as	it	doesn’t	depend	on	

To	simplify	the	expression	we	could	define:

The	resulting	expression	for	the	partial	derivative	would	be:

Now	let’s	calculate	the	derivative	for	the	second	hidden	layer	weight,	 :



And	finally	the	derivative	for	 :

You	should	notice	a	pattern.	The	derivative	on	each	layer	is	the	product	of	the
derivatives	of	the	layers	after	it	by	the	output	of	the	layer	before.	That’s	the	magic	of	the
chain	rule	and	what	the	algorithm	takes	advantage	of.

We	go	forward	from	the	inputs	calculating	the	outputs	of	each	hidden	layer	up	to	the
output	layer.	Then	we	start	calculating	derivatives	going	backwards	through	the	hidden
layers	and	propagating	the	results	in	order	to	do	less	calculations	by	reusing	all	of	the
elements	already	calculated.	That’s	the	origin	of	the	name	backpropagation.



Conclusion

Notice	how	we	have	not	used	the	definition	of	the	sigmoid	or	cross	entropy	derivatives.
We	could	have	used	a	network	with	different	activation	functions	or	loss	and	the	result
would	be	the	same.

This	is	a	very	simple	example,	but	in	a	network	with	thousands	of	weights	to	calculate
their	derivatives,	using	this	algorithm	can	save	orders	of	magnitude	in	training	time.

To	close,	there	are	a	few	different	optimization	algorithms	included	in	Tensorflow,
though	all	of	them	are	based	in	this	method	of	computing	gradients.	Which	one	works
better	depends	upon	the	shape	of	your	input	data	and	the	problem	you	are	trying	to	solve.

Sigmoid	hidden	layers,	softmax	output	layers,	and	gradient	descent	with
backpropagation	are	the	most	fundamentals	blocks	that	we	are	going	to	use	to	build	on	for
the	more	complex	models	that	will	see	in	the	next	chapters.



Part	III.	Implementing	Advanced	Deep
Models	in	TensorFlow





Chapter	5.	Object	Recognition	and
Classification
At	this	point,	you	should	have	a	basic	understanding	of	TensorFlow	and	its	best

practices.	We’ll	follow	these	practices	while	we	build	a	model	capable	of	object
recognition	and	classification.	Building	this	model	expands	on	the	fundamentals	that	have
been	covered	so	far	while	adding	terms,	techniques	and	fundamentals	of	computer	vision.
The	technique	used	in	training	the	model	has	become	popular	recently	due	to	its	accuracy
across	challenges.

ImageNet,	a	database	of	labeled	images,	is	where	computer	vision	and	deep	learning
saw	a	recent	rise	in	popularity.	Annually,	ImageNet	hosts	a	challenge	(ILSVRC)	where
people	build	systems	capable	of	automatically	classifying	and	detecting	objects	based	on
ImageNet’s	database	of	images.	In	2012,	the	challenge	saw	a	team	named	SuperVision
submit	a	solution	using	a	creative	neural	network	architecture.	ILSVRC	solutions	are	often
creative	but	what	set	SuperVision’s	entry	apart	was	its	ability	to	accurately	classify
images.	SuperVision’s	entry	set	a	new	standard	for	computer	vision	accuracy	and	stirred
up	interest	in	a	deep	learning	technique	named	convolutional	neural	networks.

Convolutional	Neural	Networks	(CNNs)	have	continued	to	grow	in	popularity.	They’re
primarily	used	for	computer	vision	related	tasks	but	are	not	limited	to	working	with
images.	CNNs	could	be	used	with	any	data	that	can	be	represented	as	a	tensor	where
values	are	ordered	next	to	related	values	(in	a	grid).	Microsoft	Research	released	a	paper
in	2014	where	they	used	CNNs	for	speech	recognition	where	the	input	tensor	was	a	single
row	grid	of	sound	frequencies	ordered	by	the	time	they	were	recorded.	For	images,	the
values	in	the	tensor	are	pixels	ordered	in	a	grid	corresponding	with	the	width	and	height	of
the	image.

In	this	chapter,	the	focus	is	working	with	CNNs	and	images	in	TensorFlow.	The	goal	is
to	build	a	CNN	model	using	TensorFlow	that	categorizes	images	based	on	a	subset	of
ImageNet’s	database.	Training	a	CNN	model	will	require	working	with	images	in
TensorFlow	and	understanding	how	convolutional	neural	networks	(CNNs)	are	used.	The
majority	of	the	chapter	is	dedicated	to	introducing	concepts	of	computer	vision	using
TensorFlow.

The	dataset	used	in	training	this	CNN	model	is	a	subset	of	the	images	available	in
ImageNet	named	the	Stanford’s	Dogs	Dataset.	As	the	name	implies,	this	dataset	is	filled
with	images	of	different	dog	breeds	and	a	label	of	the	breed	shown	in	the	image.	The	goal
of	the	model	is	to	take	an	image	and	accurately	guess	the	breed	of	dog	shown	in	the	image
(example	images	are	tagged	as	Siberian	Husky	from	Stanford’s	Dog	Datase).

http://image-net.org/
http://image-net.org/challenges/LSVRC/2012/results.html
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=726791
https://www.microsoft.com/en-us/research/publication/convolutional-neural-networks-for-speech-recognition/
http://vision.stanford.edu/aditya86/ImageNetDogs/


If	one	of	the	images	shown	above	is	loaded	into	the	model,	it	should	output	a	label	of
Siberian	Husky.	These	example	images	wouldn’t	be	a	fair	test	of	the	model’s	accuracy
because	they	exist	in	the	training	dataset.	Finding	a	fair	metric	to	calculate	the	model’s
accuracy	requires	a	large	number	of	images	which	won’t	be	used	in	training.	The	images
which	haven’t	been	used	in	training	the	model	will	be	used	to	create	a	separate	test
dataset.

The	reason	to	bring	up	the	fairness	of	an	image	to	test	a	model’s	accuracy	is	because	it’s
part	of	keeping	a	separated	test,	train	and	cross-validation	datasets.	While	processing
input,	it	is	a	required	practice	to	separate	a	large	percentage	of	the	data	used	to	train	a
network.	This	separation	is	to	allow	a	blind	test	of	a	model.	Testing	a	model	with	input
which	was	used	to	train	it	will	likely	create	a	model	which	accurately	matches	input	it	has
already	seen	while	not	being	capable	of	working	with	new	input.	The	testing	dataset	is
then	used	to	see	how	well	the	model	performs	with	data	that	didn’t	exist	in	the	training.
Over	time	and	iterations	of	the	model,	it	is	possible	that	the	changes	being	made	to
increase	accuracy	are	making	the	model	better	equipped	to	the	testing	dataset	while
performing	poorly	in	the	real	world.	A	good	practice	is	to	use	a	cross-validation	dataset	to
check	the	final	model	and	receive	a	better	estimate	of	its	accuracy.	With	images,	it’s	best
to	separate	the	raw	dataset	while	doing	any	preprocessing	(color	adjustments	or	cropping)
keeping	the	input	pipeline	the	same	across	all	the	datasets.



Convolutional	Neural	Networks

Technically,	a	convolutional	neural	network	is	a	neural	network	which	has	at	least	one
layer	(tf.nn.conv2d)	that	does	a	convolution	between	its	input	 	and	a	configurable	kernel	
generating	the	layer’s	output.	In	a	simplified	definition,	a	convolution’s	goal	is	to	apply	a
kernel	(filter)	to	every	point	in	a	tensor	and	generate	a	filtered	output	by	sliding	the	kernel
over	an	input	tensor.

An	example	of	the	filtered	output	is	edge	detection	in	images.	A	special	kernel	is
applied	to	each	pixel	of	an	image	and	the	output	is	a	new	image	depicting	all	the	edges.	In
this	case,	the	input	tensor	is	an	image	and	each	point	in	the	tensor	is	treated	as	a	pixel
which	includes	the	amount	of	red,	green	and	blue	found	at	that	point.	The	kernel	is	slid
over	every	pixel	in	the	image	and	the	output	value	increases	whenever	there	is	an	edge
between	colors.	This	figure	shows	the	simplified	convolution	layer	where	the	input	is	an
image	and	the	output	is	all	the	horizontal	lines	found	in	the	image.

It	isn’t	important	to	understand	how	convolutions	combine	input	to	generate	filtered
output,	or	what	a	kernel	is,	until	later	in	this	chapter	when	they’re	put	in	practice.
Obtaining	a	broad	sense	of	what	a	CNN	does	and	its	biological	inspiration	builds	the
technical	implementation.

In	1968,	an	article	was	published	detailing	new	findings	on	the	cellular	layout	of	a
monkey	striate	cortex	(the	section	of	the	brain	thought	to	process	visual	input).	The	article

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557912/


discusses	a	grouping	of	cells	that	extend	vertically	combining	together	to	match	certain
visual	traits.	The	study	of	primate	brains	may	seem	irrelevant	to	a	machine	learning	task,
yet	it	was	instrumental	in	the	development	of	deep	learning	using	CNNs.

CNNs	follow	a	simplified	process	matching	information	similar	to	the	structure	found
in	the	cellular	layout	of	a	monkey’s	striate	cortex.	As	signals	are	passed	through	a
monkey’s	striate	cortex,	certain	layers	signal	when	a	visual	pattern	is	highlighted.	For
example,	one	layer	of	cells	activate	(increase	its	output	signal)	when	a	horizontal	line
passes	through	it.	A	CNN	will	exhibit	a	similar	behavior	where	clusters	of	neurons	will
activate	based	on	patterns	learned	from	training.	For	example,	after	training,	a	CNN	will
have	certain	layers	that	activate	when	a	horizontal	line	passes	through	it.

Matching	horizontal	lines	would	be	a	useful	neural	network	architecture.	but	CNNs	take
it	further	by	layering	multiple	simple	patterns	to	match	complex	patterns.	In	the	context	of
CNNs,	these	patterns	are	known	as	filters	or	kernels	and	the	goal	is	to	adjust	these	kernel
weights	until	they	accurately	match	the	training	data.	Training	these	filters	is	often
accomplished	by	combining	multiple	different	layers	and	learning	weights	using	gradient
descent.

A	simple	CNN	architecture	may	combine	a	convolutional	layer	(tf.nn.conv2d),	non-
linearity	layer	(tf.nn.relu),	pooling	layer	(tf.nn.max_pool)	and	a	fully	connected	layer
(tf.matmul).	Without	these	layers,	it’s	difficult	to	match	complex	patterns	because	the
network	will	be	filled	with	too	much	information.	A	well	designed	CNN	architecture
highlights	important	information	while	ignoring	noise.	We’ll	go	into	details	on	how	these
layers	work	together	later	in	this	chapter.

The	input	image	for	this	architecture	is	a	complex	format	designed	to	support	the	ability
to	load	batches	of	images.	Loading	a	batch	of	images	allows	the	computation	of	multiple
images	simultaneously	but	it	requires	a	more	complex	data	structure.	The	data	structure
used	is	a	rank	four	tensor	including	all	the	information	required	to	convolve	a	batch	of

http://www.nature.com/nature/journal/v521/n7553/full/nature14539.html


images.	TensorFlow’s	input	pipeline	(which	is	used	to	read	and	decode	files)	has	a	special
format	designed	to	work	with	multiple	images	in	a	batch	including	required	information
for	an	image	([image_batch_size,	image_height,	image_width,	image_channels]).	Using	the	example
code,	it’s	possible	to	examine	the	structure	of	an	example	input	used	while	working	with
images	in	TensorFlow.
image_batch	=	tf.constant([

								[		#	First	Image

												[[0,	255,	0],	[0,	255,	0],	[0,	255,	0]],

												[[0,	255,	0],	[0,	255,	0],	[0,	255,	0]]

								],

								[		#	Second	Image

												[[0,	0,	255],	[0,	0,	255],	[0,	0,	255]],

												[[0,	0,	255],	[0,	0,	255],	[0,	0,	255]]

								]

				])

image_batch.get_shape()

The	output	from	executing	the	example	code	is:
	TensorShape([Dimension(2),	Dimension(2),	Dimension(3),	Dimension(3)])

NOTE:	The	example	code	and	further	examples	in	this	chapter	do	not	include	the
common	bootstrapping	required	to	run	TensorFlow	code.	This	includes	importing	the
tensorflow	(usually	as	tf	for	brevity),	creating	a	TensorFlow	session	as	sess,	initializing	all
variables,	and	starting	thread	runners.	Undefined	variable	errors	may	occur	if	the	example
code	is	executed	without	running	these	steps.

In	this	example	code,	a	batch	of	images	is	created	that	includes	two	images.	Each	image
has	a	height	of	two	pixels	and	a	width	of	three	pixels	with	an	RGB	color	space.	The	output
from	executing	the	example	code	shows	the	amount	of	images	as	the	size	of	the	first	set	of
dimensions	Dimension(2),	the	height	of	each	image	as	the	size	of	the	second	set	Dimension(2),
the	width	of	each	image	as	the	third	set	Dimension(3),	and	the	size	of	the	color	channel	as	the
final	set	Dimension(3).

It’s	important	to	note	each	pixel	maps	to	the	height	and	width	of	the	image.	Retrieving
the	first	pixel	of	the	first	image	requires	each	dimension	accessed	as	follows.
sess.run(image_batch)[0][0][0]

The	output	from	executing	the	example	code	is:
	array([	0,	255,	0],	dtype=int32)

Instead	of	loading	images	from	disk,	the	image_batch	variable	will	act	as	if	it	were	images
loaded	as	part	of	an	input	pipeline.	Images	loaded	from	disk	using	an	input	pipeline	have
the	same	format	and	act	the	same.	It’s	often	useful	to	create	fake	data	similar	to	the
image_batch	example	above	to	test	input	and	output	from	a	CNN.	The	simplified	input	will
make	it	easier	to	debug	any	simple	issues.	It’s	important	to	work	on	simplification	of
debugging	because	CNN	architectures	are	incredibly	complex	and	often	take	days	to	train.

The	first	complexity	working	with	CNN	architectures	is	how	a	convolution	layer	works.
After	any	image	loading	and	manipulation,	a	convolution	layer	is	often	the	first	layer	in
the	network.	The	first	convolution	layer	is	useful	because	it	can	simplify	the	rest	of	the
network	and	be	used	for	debugging.	The	next	section	will	focus	on	how	convolution	layers



operate	and	using	them	with	TensorFlow.



Convolution

As	the	name	implies,	convolution	operations	are	an	important	component	of
convolutional	neural	networks.	The	ability	for	a	CNN	to	accurately	match	diverse	patterns
can	be	attributed	to	using	convolution	operations.	These	operations	require	complex	input,
which	was	shown	in	the	previous	section.	In	this	section	we’ll	experiment	with
convolution	operations	and	the	parameters	that	are	available	to	tune	them.	Here	the
convolution	operation	convolves	two	input	tensors	(input	and	kernel)	into	a	single	output
tensor,	which	represents	information	from	each	input.



Input	and	Kernel
Convolution	operations	in	TensorFlow	are	done	using	tf.nn.conv2d	in	a	typical	situation.

There	are	other	convolution	operations	available	using	TensorFlow	designed	with	special
use	cases.	tf.nn.conv2d	is	the	preferred	convolution	operation	to	begin	experimenting	with.
For	example,	we	can	experiment	with	convolving	two	tensors	together	and	inspect	the
result.
input_batch	=	tf.constant([

								[		#	First	Input

												[[0.0],	[1.0]],

												[[2.0],	[3.0]]

								],

								[		#	Second	Input

												[[2.0],	[4.0]],

												[[6.0],	[8.0]]

								]

				])

kernel	=	tf.constant([

								[

												[[1.0,	2.0]]

								]

				])

The	example	code	creates	two	tensors.	The	input_batch	tensor	has	a	similar	shape	to	the
image_batch	tensor	seen	in	the	previous	section.	This	will	be	the	first	tensor	being	convolved
and	the	second	tensor	will	be	kernel.	Kernel	is	an	important	term	that	is	interchangeable
with	weights,	filter,	convolution	matrix	or	mask.	Since	this	task	is	computer	vision	related,
it’s	useful	to	use	the	term	kernel	because	it	is	being	treated	as	an	image	kernel.	There	is	no
practical	difference	in	the	term	when	used	to	describe	this	functionality	in	TensorFlow.
The	parameter	in	TensorFlow	is	named	filter	and	it	expects	a	set	of	weights	which	will	be
learned	from	training.	The	amount	of	different	weights	included	in	the	kernel	(filter
parameter)	will	configure	the	amount	of	kernels	that	will	be	learned.

In	the	example	code,	there	is	a	single	kernel	which	is	the	first	dimension	of	the	kernel
variable.	The	kernel	is	built	to	return	a	tensor	that	will	include	one	channel	with	the
original	input	and	a	second	channel	with	the	original	input	doubled.	In	this	case,	channel	is
used	to	describe	the	elements	in	a	rank	1	tensor	(vector).	Channel	is	a	term	from	computer
vision	that	describes	the	output	vector,	for	example	an	RGB	image	has	three	channels
represented	as	a	rank	1	tensor	[red,	green,	blue].	At	this	time,	ignore	the	strides	and	padding
parameter,	which	will	be	covered	later,	and	focus	on	the	convolution	(tf.nn.conv2d)	output.
conv2d	=	tf.nn.conv2d(input_batch,	kernel,	strides=[1,	1,	1,	1],	padding='SAME')

sess.run(conv2d)

The	output	from	executing	the	example	code	is:
	array([[[[	0.,	0.],

				[	1.,	2.]],

				[[	2.,	4.],

				[	3.,	6.]]],

				[[[	2.,	4.],

				[	4.,	8.]],

				[[	6.,	12.],

				[	8.,	16.]]]],	dtype=float32)

The	output	is	another	tensor	which	is	the	same	rank	as	the	input_batch	but	includes	the

https://en.wikipedia.org/wiki/Kernel_(image_processing


number	of	dimensions	found	in	the	kernel.	Consider	if	input_batch	represented	an	image,
the	image	would	have	a	single	channel,	in	this	case	it	could	be	considered	a	grayscale
image.	Each	element	in	the	tensor	would	represent	one	pixel	of	the	image.	The	pixel	in	the
bottom	right	corner	of	the	image	would	have	the	value	of	3.0.

Consider	the	tf.nn.conv2d	convolution	operation	as	a	combination	of	the	image
(represented	as	input_batch)	and	the	kernel	tenser.	The	convolution	of	these	two	tensors
create	a	feature	map.	Feature	map	is	a	broad	term	except	in	computer	vision	where	it
relates	to	the	output	of	operations	which	work	with	an	image	kernel.	The	feature	map	now
represents	the	convolution	of	these	tensors	by	adding	new	layers	to	the	output.

The	relationship	between	the	input	images	and	the	output	feature	map	can	be	explored
with	code.	Accessing	elements	from	the	input	batch	and	the	feature	map	are	done	using
the	same	index.	By	accessing	the	same	pixel	in	both	the	input	and	the	feature	map	shows
how	the	input	was	changed	when	it	convolved	with	the	kernel.	In	the	following	case,	the
lower	right	pixel	in	the	image	was	changed	to	output	the	value	found	by	multiplying	

	and	 .	The	values	correspond	to	the	pixel	value	and	the
corresponding	value	found	in	the	kernel.
lower_right_image_pixel	=	sess.run(input_batch)[0][1][1]

lower_right_kernel_pixel	=	sess.run(conv2d)[0][1][1]

lower_right_image_pixel,	lower_right_kernel_pixel

The	output	from	executing	the	example	code	is:
	(array([	3.],	dtype=float32),	array([	3.,	6.],	dtype=float32))

In	this	simplified	example,	each	pixel	of	every	image	is	multiplied	by	the	corresponding
value	found	in	the	kernel	and	then	added	to	a	corresponding	layer	in	the	feature	map.
Layer,	in	this	context,	is	referencing	a	new	dimension	in	the	output.	With	this	example,	it’s
hard	to	see	a	value	in	convolution	operations.



Strides
The	value	of	convolutions	in	computer	vision	is	their	ability	to	reduce	the

dimensionality	of	the	input,	which	is	an	image	in	this	case.	An	image’s	dimensionality	(2D
image)	is	its	width,	height	and	number	of	channels.	A	large	image	dimensionality	requires
an	exponentially	larger	amount	of	time	for	a	neural	network	to	scan	over	every	pixel	and
judge	which	ones	are	important.	Reducing	dimensionality	of	an	image	with	convolutions
is	done	by	altering	the	strides	of	the	kernel.

The	parameter	strides,	causes	a	kernel	to	skip	over	pixels	of	an	image	and	not	include
them	in	the	output.	It’s	not	fair	to	say	the	pixels	are	skipped	because	they	still	may	affect
the	output.	The	strides	parameter	highlights	how	a	convolution	operation	is	working	with	a
kernel	when	a	larger	image	and	more	complex	kernel	are	used.	As	a	convolution	is	sliding
the	kernel	over	the	input,	it’s	using	the	strides	parameter	to	change	how	it	walks	over	the
input.	Instead	of	going	over	every	element	of	an	input,	the	strides	parameter	could
configure	the	convolution	to	skip	certain	elements.

For	example,	take	the	convolution	of	a	larger	image	and	a	larger	kernel.	In	this	case,	it’s
a	convolution	between	a	6	pixel	tall,	6	pixel	wide	and	1	channel	deep	image	(6x6x1)	and	a
(3x3x1)	kernel.
input_batch	=	tf.constant([

								[		#	First	Input	(6x6x1)

												[[0.0],	[1.0],	[2.0],	[3.0],	[4.0],	[5.0]],

												[[0.1],	[1.1],	[2.1],	[3.1],	[4.1],	[5.1]],

												[[0.2],	[1.2],	[2.2],	[3.2],	[4.2],	[5.2]],

												[[0.3],	[1.3],	[2.3],	[3.3],	[4.3],	[5.3]],

												[[0.4],	[1.4],	[2.4],	[3.4],	[4.4],	[5.4]],

												[[0.5],	[1.5],	[2.5],	[3.5],	[4.5],	[5.5]],

								],

				])

kernel	=	tf.constant([		#	Kernel	(3x3x1)

								[[[0.0]],	[[0.5]],	[[0.0]]],

								[[[0.0]],	[[1.0]],	[[0.0]]],

								[[[0.0]],	[[0.5]],	[[0.0]]]

				])

#	NOTE:	the	change	in	the	size	of	the	strides	parameter.

conv2d	=	tf.nn.conv2d(input_batch,	kernel,	strides=[1,	3,	3,	1],	padding='SAME')

sess.run(conv2d)

The	output	from	executing	the	example	code	is:
	array([[[[	2.20000005],

				[	8.19999981]],

				[[	2.79999995],

				[	8.80000019]]]],	dtype=float32)

The	input_batch	was	combined	with	the	kernel	by	moving	the	kernel	over	the	input_batch
striding	(or	skipping)	over	certain	elements.	Each	time	the	kernel	was	moved,	it	get
centered	over	an	element	of	input_batch.	Then	the	overlapping	values	are	multiplied
together	and	the	result	is	added	together.	This	is	how	a	convolution	combines	two	inputs
using	what’s	referred	to	as	pointwise	multiplication.	It	may	be	easier	to	visualize	using	the
following	figure.



In	this	figure,	the	same	logic	follows	what	is	found	in	the	code.	Two	tensors	convolved
together	while	striding	over	the	input.	The	strides	reduced	the	dimensionality	of	the	output
a	large	amount	while	the	kernel	size	allowed	the	convolution	to	use	all	the	input	values.
None	of	the	input	data	was	completely	removed	from	striding	but	now	the	input	is	a
smaller	tensor.

Strides	are	a	way	to	adjust	the	dimensionality	of	input	tensors.	Reducing	dimensionality
requires	less	processing	power,	and	will	keep	from	creating	receptive	fields	which
completely	overlap.	The	strides	parameter	follows	the	same	format	as	the	input	tensor
[image_batch_size_stride,	image_height_stride,	image_width_stride,	image_channels_stride].
Changing	the	first	or	last	element	of	the	stride	parameter	are	rare,	they’d	skip	data	in	a
tf.nn.conv2d	operation	and	not	take	the	input	into	account.	The	image_height_stride	and
image_width_stride	are	useful	to	alter	in	reducing	input	dimensionality.

A	challenge	that	comes	up	often	with	striding	over	the	input	is	how	to	deal	with	a	stride
which	doesn’t	evenly	end	at	the	edge	of	the	input.	The	uneven	striding	will	come	up	often
due	to	image	size	and	kernel	size	not	matching	the	striding.	If	the	image	size,	kernel	size
and	strides	can’t	be	changed	then	padding	can	be	added	to	the	image	to	deal	with	the
uneven	area.



Padding
When	a	kernel	is	overlapped	on	an	image	it	should	be	set	to	fit	within	the	bounds	of	the

image.	At	times,	the	sizing	may	not	fit	and	a	good	alternative	is	to	fill	the	missing	area	in
the	image.	Filling	the	missing	area	of	the	image	is	known	as	padding	the	image.
TensorFlow	will	pad	the	image	with	zeros	or	raise	an	error	when	the	sizes	don’t	allow	a
kernel	to	stride	over	an	image	without	going	past	its	bounds.	The	amount	of	zeros	or	the
error	state	of	tf.nn.conv2d	is	controlled	by	the	parameter	padding	which	has	two	possible
values	(‘VALID’,	‘SAME’).

SAME:	The	convolution	output	is	the	SAME	size	as	the	input.	This	doesn’t	take	the
filter’s	size	into	account	when	calculating	how	to	stride	over	the	image.	This	may	stride
over	more	of	the	image	than	what	exists	in	the	bounds	while	padding	all	the	missing
values	with	zero.

VALID:	Take	the	filter’s	size	into	account	when	calculating	how	to	stride	over	the
image.	This	will	try	to	keep	as	much	of	the	kernel	inside	the	image’s	bounds	as	possible.
There	may	be	padding	in	some	cases	but	will	avoid.

It’s	best	to	consider	the	size	of	the	input	but	if	padding	is	necessary	then	TensorFlow
has	the	option	built	in.	In	most	simple	scenarios,	SAME	is	a	good	choice	to	begin	with.	VALID
is	preferential	when	the	input	and	kernel	work	well	with	the	strides.	For	further
information,	TensorFlow	covers	this	subject	well	in	the	convolution	documentation.

https://www.tensorflow.org/versions/master/api_docs/python/nn.html#convolution


Data	Format
There’s	another	parameter	to	tf.nn.conv2d	which	isn’t	shown	from	these	examples	named

data_format.	The	tf.nn.conv2d	docs	explain	how	to	change	the	data	format	so	the	input,	kernel
and	strides	follow	a	format	other	than	the	format	being	used	thus	far.	Changing	this	format
is	useful	if	there	is	an	input	tensor	which	doesn’t	follow	the	[batch_size,	height,	width,
channel]	standard.	Instead	of	changing	the	input	to	match,	it’s	possible	to	change	the
data_format	parameter	to	use	a	different	layout.

data_format:	An	optional	string	from:	“NHWC”,	“NCHW”.	Defaults	to	“NHWC”.	Specify	the	data	format	of
the	input	and	output	data.	With	the	default	format	“NHWC”,	the	data	is	stored	in	the	order	of:	[batch,
in_height,	in_width,	in_channels].	Alternatively,	the	format	could	be	“NCHW”,	the	data	storage	order	of:
[batch,	in_channels,	in_height,	in_width].

Data	Format Definition

N Number	of	tensors	in	a	batch,	the	batch_size.

H Height	of	the	tensors	in	each	batch.

W Width	of	the	tensors	in	each	batch.

C Channels	of	the	tensors	in	each	batch.

https://www.tensorflow.org/versions/master/api_docs/python/nn.html#conv2d


Kernels	in	Depth
In	TensorFlow	the	filter	parameter	is	used	to	specify	the	kernel	convolved	with	the

input.	Filters	are	commonly	used	in	photography	to	adjust	attributes	of	a	picture,	such	as
the	amount	of	sunlight	allowed	to	reach	a	camera’s	lens.	In	photography,	filters	allow	a
photographer	to	drastically	alter	the	picture	they’re	taking.	The	reason	the	photographer	is
able	to	alter	their	picture	using	a	filter	is	because	the	filter	can	recognize	certain	attributes
of	the	light	coming	in	to	the	lens.	For	example,	a	red	lens	filter	will	absorb	(block)	every
frequency	of	light	which	isn’t	red	allowing	only	red	to	pass	through	the	filter.

In	computer	vision,	kernels	(filters)	are	used	to	recognize	important	attributes	of	a
digital	image.	They	do	this	by	using	certain	patterns	to	highlight	when	features	exist	in	an
image.	A	kernel	which	will	replicate	the	red	filter	example	image	is	implemented	by	using
a	reduced	value	for	all	colors	except	red.	In	this	case,	the	reds	will	stay	the	same	but	all
other	colors	matched	are	reduced.

The	example	seen	at	the	start	of	this	chapter	uses	a	kernel	designed	to	do	edge
detection.	Edge	detection	kernels	are	common	in	computer	vision	applications	and	could
be	implemented	using	basic	TensorFlow	operations	and	a	single	tf.nn.conv2d	operation.
kernel	=	tf.constant([

								[

												[[	-1.,	0.,	0.],	[	0.,	-1.,	0.],	[	0.,	0.,	-1.]],

												[[	-1.,	0.,	0.],	[	0.,	-1.,	0.],	[	0.,	0.,	-1.]],

												[[	-1.,	0.,	0.],	[	0.,	-1.,	0.],	[	0.,	0.,	-1.]]

								],

								[

												[[	-1.,	0.,	0.],	[	0.,	-1.,	0.],	[	0.,	0.,	-1.]],

												[[	8.,	0.,	0.],	[	0.,	8.,	0.],	[	0.,	0.,	8.]],

												[[	-1.,	0.,	0.],	[	0.,	-1.,	0.],	[	0.,	0.,	-1.]]

								],

								[

												[[	-1.,	0.,	0.],	[	0.,	-1.,	0.],	[	0.,	0.,	-1.]],

												[[	-1.,	0.,	0.],	[	0.,	-1.,	0.],	[	0.,	0.,	-1.]],

												[[	-1.,	0.,	0.],	[	0.,	-1.,	0.],	[	0.,	0.,	-1.]]

								]

				])

conv2d	=	tf.nn.conv2d(image_batch,	kernel,	[1,	1,	1,	1],	padding="SAME")

activation_map	=	sess.run(tf.minimum(tf.nn.relu(conv2d),	255))



The	output	created	from	convolving	an	image	with	an	edge	detection	kernel	are	all	the
areas	where	and	edge	was	detected.	The	code	assumes	a	batch	of	images	is	already
available	(image_batch)	with	a	real	image	loaded	from	disk.	In	this	case,	the	image	is	an
example	image	found	in	the	Stanford	Dogs	Dataset.	The	kernel	has	three	input	and	three
output	channels.	The	channels	sync	up	to	RGB	values	between	 	with	255	being
the	maximum	intensity.	The	tf.minimum	and	tf.nn.relu	calls	are	there	to	keep	the	convolution
values	within	the	range	of	valid	RGB	colors	of	 .

There	are	many	other)	common	kernels	which	can	be	used	in	this	simplified	example.
Each	will	highlight	different	patterns	in	an	image	with	different	results.	The	following
kernel	will	sharpen	an	image	by	increasing	the	intensity	of	color	changes.
kernel	=	tf.constant([

								[

												[[	0.,	0.,	0.],	[	0.,	0.,	0.],	[	0.,	0.,	0.]],

												[[	-1.,	0.,	0.],	[	0.,	-1.,	0.],	[	0.,	0.,	-1.]],

												[[	0.,	0.,	0.],	[	0.,	0.,	0.],	[	0.,	0.,	0.]]

								],

								[

												[[	-1.,	0.,	0.],	[	0.,	-1.,	0.],	[	0.,	0.,	-1.]],

												[[	5.,	0.,	0.],	[	0.,	5.,	0.],	[	0.,	0.,	5.]],

												[[	-1.,	0.,	0.],	[	0.,	-1.,	0.],	[	0.,	0.,	-1.]]

								],

								[

												[[	0.,	0.,	0.],	[	0.,	0.,	0.],	[	0.,	0.,	0.]],

												[[	-1.,	0.,	0.],	[	0.,	-1.,	0.],	[	0.,	0.,	-1.]],

												[[	0,	0.,	0.],	[	0.,	0.,	0.],	[	0.,	0.,	0.]]

								]

				])

conv2d	=	tf.nn.conv2d(image_batch,	kernel,	[1,	1,	1,	1],	padding="SAME")

activation_map	=	sess.run(tf.minimum(tf.nn.relu(conv2d),	255))

https://en.wikipedia.org/wiki/Kernel_(image_processing


The	values	in	the	kernel	were	adjusted	with	the	center	of	the	kernel	increased	in
intensity	and	the	areas	around	the	kernel	reduced	in	intensity.	The	change,	matches
patterns	with	intense	pixels	and	increases	their	intensity	outputting	an	image	which	is
visually	sharpened.	Note	that	the	corners	of	the	kernel	are	all	0	and	don’t	affect	the	output
that	operates	in	a	plus	shaped	pattern.

These	kernels	match	patterns	in	images	at	a	rudimentary	level.	A	convolutional	neural
network	matches	edges	and	more	by	using	a	complex	kernel	it	learned	during	training.
The	starting	values	for	the	kernel	are	usually	random	and	over	time	they’re	trained	by	the
CNN’s	learning	layer.	When	a	CNN	is	complete,	it	starts	running	and	each	image	sent	in	is
convolved	with	a	kernel	which	is	then	changed	based	on	if	the	predicted	value	matches	the
labeled	value	of	the	image.	For	example,	if	a	Sheepdog	picture	is	considered	a	Pit	Bull	by
the	CNN	being	trained	it	will	then	change	the	filters	a	small	amount	to	try	and	match
Sheepdog	pictures	better.

Learning	complex	patterns	with	a	CNN	involves	more	than	a	single	layer	of
convolution.	Even	the	example	code	included	a	tf.nn.relu	layer	used	to	prepare	the	output
for	visualization.	Convolution	layers	may	occur	more	than	once	in	a	CNN	but	they’ll
likely	include	other	layer	types	as	well.	These	layers	combined	form	the	support	network
required	for	a	successful	CNN	architecture.



Common	Layers

For	a	neural	network	architecture	to	be	considered	a	CNN,	it	requires	at	least	one
convolution	layer	(tf.nn.conv2d).	There	are	practical	uses	for	a	single	layer	CNN	(edge
detection),	for	image	recognition	and	categorization	it	is	common	to	use	different	layer
types	to	support	a	convolution	layer.	These	layers	help	reduce	over-fitting,	speed	up
training	and	decrease	memory	usage.

The	layers	covered	in	this	chapter	are	focused	on	layers	commonly	used	in	a	CNN
architecture.	A	CNN	isn’t	limited	to	use	only	these	layers,	they	can	be	mixed	with	layers
designed	for	other	network	architectures.



Convolution	Layers
One	type	of	convolution	layer	has	been	covered	in	detail	(tf.nn.conv2d)	but	there	are	a

few	notes	which	are	useful	to	advanced	users.	The	convolution	layers	in	TensorFlow	don’t
do	a	full	convolution,	details	can	be	found	in	the	TensorFlow	API	documentation.	In
practice,	the	difference	between	a	convolution	and	the	operation	TensorFlow	uses	is
performance.	TensorFlow	uses	a	technique	to	speed	up	the	convolution	operation	in	all	the
different	types	of	convolution	layers.

There	are	use	cases	for	each	type	of	convolution	layer	but	for	tf.nn.conv2d	is	a	good	place
to	start.	The	other	types	of	convolutions	are	useful	but	not	required	in	building	a	network
capable	of	object	recognition	and	classification.	A	brief	summary	of	each	is	included.

tf.nn.depthwise_conv2d
This	convolution	is	used	when	attaching	the	output	of	one	convolution	to	the	input	of

another	convolution	layer.	An	advanced	use	case	is	using	a	tf.nn.depthwise_conv2d	to	create	a
network	following	the	inception	architecture.

tf.nn.separable_conv2d
This	is	similar	to	tf.nn.conv2d,	but	not	a	replacement	for	it.	For	large	models,	it	speeds	up

training	without	sacrificing	accuracy.	For	small	models,	it	will	converge	quickly	with
worse	accuracy.

tf.nn.conv2d_transpose
This	applies	a	kernel	to	a	new	feature	map	where	each	section	is	filled	with	the	same

values	as	the	kernel.	As	the	kernel	strides	over	the	new	image,	any	overlapping	sections
are	summed	together.	There	is	a	great	explanation	on	how	tf.nn.conv2d_transpose	is	used	for
learnable	upsampling	in	Stanford’s	CS231n	Winter	2016:	Lecture	13.

https://www.tensorflow.org/versions/master/api_docs/python/nn.html#convolution
http://arxiv.org/abs/1512.00567
https://www.youtube.com/watch?v=ByjaPdWXKJ4&t=20m00s


Activation	Functions
These	functions	are	used	in	combination	with	the	output	of	other	layers	to	generate	a

feature	map.	They’re	used	to	smooth	(or	differentiate)	the	results	of	certain	operations.
The	goal	is	to	introduce	non-linearity	into	the	neural	network.	Non-linearity	means	that
the	input	is	a	curve	instead	of	a	straight	line.	Curves	are	capable	of	representing	more
complex	changes	in	input.	For	example,	non-linear	input	is	capable	of	describing	input
which	stays	small	for	the	majority	of	the	time	but	periodically	has	a	single	point	at	an
extreme.	Introduction	of	non-linearity	in	a	neural	network	allows	it	to	train	on	the	complex
patterns	found	in	data.

TensorFlow	has	multiple	activation	functions	available.	With	CNNs,	tf.nn.relu	is
primarily	used	because	of	its	performance	although	it	sacrifices	information.	When
starting	out,	using	tf.nn.relu	is	recommended	but	advanced	users	may	create	their	own.
When	considering	if	an	activation	function	is	useful	there	are	a	few	primary
considerations.

1.	 The	function	is	monotonic,	so	its	output	should	always	be	increasing	or	decreasing
along	with	the	input.	This	allows	gradient	descent	optimization	to	search	for	local
minima.

2.	 The	function	is	differentiable,	so	there	must	be	a	derivative	at	any	point	in	the
function’s	domain.	This	allows	gradient	descent	optimization	to	properly	work	using
the	output	from	this	style	of	activation	function.

Any	functions	that	satisfy	those	considerations	could	be	used	as	activation	functions.	In
TensorFlow	there	are	a	few	worth	highlighting	which	are	common	to	see	in	CNN
architectures.	A	brief	summary	of	each	is	included	with	a	small	sample	code	illustrating
their	usage.

tf.nn.relu
A	rectifier	(rectified	linear	unit)	called	a	ramp	function	in	some	documentation	and

looks	like	a	skateboard	ramp	when	plotted.	ReLU	is	linear	and	keeps	the	same	input
values	for	any	positive	numbers	while	setting	all	negative	numbers	to	be	0.	It	has	the

benefits	that	it	doesn’t	suffer	from	gradient	vanishing	and	has	a	range	of	 .	A
drawback	of	ReLU	is	that	it	can	suffer	from	neurons	becoming	saturated	when	too	high	of
a	learning	rate	is	used.
features	=	tf.range(-2,	3)

#	Keep	note	of	the	value	for	negative	features

sess.run([features,	tf.nn.relu(features)])

The	output	from	executing	the	example	code	is:
	[array([-2,	-1,	0,	1,	2],	dtype=int32),	array([0,	0,	0,	1,	2],	dtype=int32)]

In	this	example,	the	input	in	a	rank	one	tensor	(vector)	of	integer	values	between	
.	A	tf.nn.relu	is	ran	over	the	values	the	output	highlights	that	any	value	less

than	0	is	set	to	be	0.	The	other	input	values	are	left	untouched.

https://www.tensorflow.org/versions/master/api_docs/python/nn.html#activation-functions
https://en.wikipedia.org/wiki/Monotonic_function
https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/Vanishing_gradient_problem


tf.sigmoid

A	sigmoid	function	returns	a	value	in	the	range	of	 .	Larger	values	sent	into
a	tf.sigmoid	will	trend	closer	to	1.0	while	smaller	values	will	trend	towards	0.0.	The	ability
for	sigmoids	to	keep	a	values	between	 	is	useful	in	networks	which	train	on
probabilities	which	are	in	the	range	of	 .	The	reduced	range	of	output	values
can	cause	trouble	with	input	becoming	saturated	and	changes	in	input	becoming
exaggerated.
#	Note,	tf.sigmoid	(tf.nn.sigmoid)	is	currently	limited	to	float	values

features	=	tf.to_float(tf.range(-1,	3))

sess.run([features,	tf.sigmoid(features)])

The	output	from	executing	the	example	code	is:
	[array([-1.,	0.,	1.,	2.],	dtype=float32),

				array([	0.26894143,	0.5,	0.7310586,	0.88079703],	dtype=float32)]

In	this	example,	a	range	of	integers	is	converted	to	be	float	values	(1	becomes	1.0)	and	a
sigmoid	function	is	ran	over	the	input	features.	The	result	highlights	that	when	a	value	of
0.0	is	passed	through	a	sigmoid,	the	result	is	0.5	which	is	the	midpoint	of	the	simoid’s
domain.	It’s	useful	to	note	that	with	0.5	being	the	sigmoid’s	midpoint,	negative	values	can
be	used	as	input	to	a	sigmoid.

tf.tanh
A	hyperbolic	tangent	function	(tanh)	is	a	close	relative	to	tf.sigmoid	with	some	of	the

same	benefits	and	drawbacks.	The	main	difference	between	tf.sigmoid	and	tf.tanh	is	that
tf.tanh	has	a	range	of	 .	The	ability	to	output	negative	values	may	be
useful	in	certain	network	architectures.
#	Note,	tf.tanh	(tf.nn.tanh)	is	currently	limited	to	float	values

features	=	tf.to_float(tf.range(-1,	3))

sess.run([features,	tf.tanh(features)])

The	output	from	executing	the	example	code	is:
	[array([-1.,	0.,	1.,	2.],	dtype=float32),

				array([-0.76159418,	0.,	0.76159418,	0.96402758],	dtype=float32)]

In	this	example,	all	the	setup	is	the	same	as	the	tf.sigmoid	example	but	the	output	shows
an	important	difference.	In	the	output	of	tf.tanh	the	midpoint	is	0.0	with	negative	values.
This	can	cause	trouble	if	the	next	layer	in	the	network	isn’t	expecting	negative	input	or
input	of	0.0.

tf.nn.dropout
Set	the	output	to	be	0.0	based	on	a	configurable	probability.	This	layer	performs	well	in

scenarios	where	a	little	randomness	helps	training.	An	example	scenario	is	when	there	are
patterns	being	learned	that	are	too	tied	to	their	neighboring	features.	This	layer	will	add	a
little	noise	to	the	output	being	learned.

NOTE:	This	layer	should	only	be	used	during	training	because	the	random	noise	it	adds



will	give	misleading	results	while	testing.
features	=	tf.constant([-0.1,	0.0,	0.1,	0.2])

#	Note,	the	output	should	be	different	on	almost	ever	execution.	Your	numbers	won't	match

#	this	output.

sess.run([features,	tf.nn.dropout(features,	keep_prob=0.5)])

The	output	from	executing	the	example	code	is:
	[array([-0.1,	0.,	0.1,	0.2],	dtype=float32),

				array([-0.,	0.,	0.2,	0.40000001],	dtype=float32)]

In	this	example,	the	output	has	a	50%	probability	of	being	kept.	Each	execution	of	this
layer	will	have	different	output	(most	likely,	it’s	somewhat	random).	When	an	output	is
dropped,	its	value	is	set	to	0.0.



Pooling	Layers
Pooling	layers	reduce	over-fitting	and	improving	performance	by	reducing	the	size	of

the	input.	They’re	used	to	scale	down	input	while	keeping	important	information	for	the
next	layer.	It’s	possible	to	reduce	the	size	of	the	input	using	a	tf.nn.conv2d	alone	but	these
layers	execute	much	faster.

tf.nn.max_pool
Strides	over	a	tensor	and	chooses	the	maximum	value	found	within	a	certain	kernel	size.

Useful	when	the	intensity	of	the	input	data	is	relevant	to	importance	in	the	image.

The	same	example	is	modeled	using	example	code	below.	The	goal	is	to	find	the	largest
value	within	the	tensor.
#	Usually	the	input	would	be	output	from	a	previous	layer	and	not	an	image	directly.

batch_size=1

input_height	=	3

input_width	=	3

input_channels	=	1

layer_input	=	tf.constant([

								[

												[[1.0],	[0.2],	[1.5]],

												[[0.1],	[1.2],	[1.4]],

												[[1.1],	[0.4],	[0.4]]

								]

				])

#	The	strides	will	look	at	the	entire	input	by	using	the	image_height	and	image_width



kernel	=	[batch_size,	input_height,	input_width,	input_channels]

max_pool	=	tf.nn.max_pool(layer_input,	kernel,	[1,	1,	1,	1],	"VALID")

sess.run(max_pool)

The	output	from	executing	the	example	code	is:
	array([[[[	1.5]]]],	dtype=float32)

The	layer_input	is	a	tensor	with	a	shape	similar	to	the	output	of	tf.nn.conv2d	or	an
activation	function.	The	goal	is	to	keep	only	one	value,	the	largest	value	in	the	tensor.	In
this	case,	the	largest	value	of	the	tensor	is	1.5	and	is	returned	in	the	same	format	as	the
input.	If	the	kernel	were	set	to	be	smaller,	it	would	choose	the	largest	value	in	each	kernel
size	as	it	strides	over	the	image.

Max-pooling	will	commonly	be	done	using	2x2	receptive	field	(kernel	with	a	height	of	2
and	width	of	2)	which	is	often	written	as	a	“2x2	max-pooling	operation”.	One	reason	to
use	a	2x2	receptive	field	is	that	it’s	the	smallest	amount	of	downsampling	which	can	be
done	in	a	single	pass.	If	a	1x1	receptive	field	were	used	then	the	output	would	be	the	same
as	the	input.

tf.nn.avg_pool
Strides	over	a	tensor	and	averages	all	the	values	at	each	depth	found	within	a	kernel

size.	Useful	when	reducing	values	where	the	entire	kernel	is	important,	for	example,	input
tensors	with	a	large	width	and	height	but	small	depth.

The	same	example	is	modeled	using	example	code	below.	The	goal	is	to	find	the



average	of	all	the	values	within	the	tensor.
batch_size=1

input_height	=	3

input_width	=	3

input_channels	=	1

layer_input	=	tf.constant([

								[

												[[1.0],	[1.0],	[1.0]],

												[[1.0],	[0.5],	[0.0]],

												[[0.0],	[0.0],	[0.0]]

								]

				])

#	The	strides	will	look	at	the	entire	input	by	using	the	image_height	and	image_width

kernel	=	[batch_size,	input_height,	input_width,	input_channels]

max_pool	=	tf.nn.avg_pool(layer_input,	kernel,	[1,	1,	1,	1],	"VALID")

sess.run(max_pool)

The	output	from	executing	the	example	code	is:
	array([[[[	0.5]]]],	dtype=float32)

Do	a	summation	of	all	the	values	in	the	tensor,	then	divide	them	by	the	size	of	the
number	of	scalars	in	the	tensor:

This	is	exactly	what	the	example	code	did	above,	but	by	reducing	the	size	of	the	kernel,
it’s	possible	to	adjust	the	size	of	the	output.



Normalization
Normalization	layers	are	not	unique	to	CNNs	and	aren’t	used	as	often.	When	using

tf.nn.relu,	it	is	useful	to	consider	normalization	of	the	output.	Since	ReLU	is	unbounded,
it’s	often	useful	to	utilize	some	form	of	normalization	to	identify	high-frequency	features.

tf.nn.local_response_normalization	(tf.nn.lrn)
Local	response	normalization	is	a	function	which	shapes	the	output	based	on	a

summation	operation	best	explained	in	TensorFlow’s	documentation.

…	Within	a	given	vector,	each	component	is	divided	by	the	weighted,	squared	sum	of	inputs	within
depth_radius.

One	goal	of	normalization	is	to	keep	the	input	in	a	range	of	acceptable	numbers.	For
instance,	normalizing	input	in	the	range	of	 	where	the	full	range	of	possible
values	is	normalized	to	be	represented	by	a	number	greater	than	or	equal	to	0.0	and	less
than	or	equal	to	1.0.	Local	response	normalization	normalizes	values	while	taking	into
account	the	significance	of	each	value.

Cuda-Convnet	includes	further	details	on	why	using	local	response	normalization	is
useful	in	some	CNN	architectures.	ImageNet	uses	this	layer	to	normalize	the	output	from
tf.nn.relu.
#	Create	a	range	of	3	floats.

#		TensorShape([batch,	image_height,	image_width,	image_channels])

layer_input	=	tf.constant([

								[[[	1.]],	[[	2.]],	[[	3.]]]

				])

lrn	=	tf.nn.local_response_normalization(layer_input)

sess.run([layer_input,	lrn])

The	output	from	executing	the	example	code	is:
	[array([[[[	1.]],

				[[	2.]],

				[[	3.]]]],	dtype=float32),	array([[[[	0.70710677]],

				[[	0.89442718]],

				[[	0.94868326]]]],	dtype=float32)]

In	this	example	code,	the	layer	input	is	in	the	format	[batch,	image_height,	image_width,
image_channels].	The	normalization	reduced	the	output	to	be	in	the	range	of	

.	For	tf.nn.relu,	this	layer	will	reduce	its	unbounded	output	to	be	in	the
same	range.

https://www.tensorflow.org/versions/master/api_docs/python/nn.html#local_response_normalization
https://code.google.com/p/cuda-convnet/wiki/LayerParams
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


High	Level	Layers
TensorFlow	has	introduced	high	level	layers	designed	to	make	it	easier	to	create	fairly

standard	layer	definitions.	These	aren’t	required	to	use	but	they	help	avoid	duplicate	code
while	following	best	practices.	While	getting	started,	these	layers	add	a	number	of	non-
essential	nodes	to	the	graph.	It’s	worth	waiting	until	the	basics	are	comfortable	before
using	these	layers.

tf.contrib.layers.convolution2d
The	convolution2d	layer	will	do	the	same	logic	as	tf.nn.conv2d	while	including	weight

initialization,	bias	initialization,	trainable	variable	output,	bias	addition	and	adding	an
activation	function.	Many	of	these	steps	haven’t	been	covered	for	CNNs	yet	but	should	be
familiar.	A	kernel	is	a	trainable	variable	(the	CNN’s	goal	is	to	train	this	variable),	weight
initialization	is	used	to	fill	the	kernel	with	values	(tf.truncated_normal)	on	its	first	run.	The
rest	of	the	parameters	are	similar	to	what	have	been	used	before	except	they	are	reduced	to
short-hand	version.	Instead	of	declaring	the	full	kernel,	now	it’s	a	simple	tuple	(1,1)	for	the
kernel’s	height	and	width.
image_input	=	tf.constant([

												[

																[[0.,	0.,	0.],	[255.,	255.,	255.],	[254.,	0.,	0.]],

																[[0.,	191.,	0.],	[3.,	108.,	233.],	[0.,	191.,	0.]],

																[[254.,	0.,	0.],	[255.,	255.,	255.],	[0.,	0.,	0.]]

												]

								])

conv2d	=	tf.contrib.layers.convolution2d(

				image_input,

				num_output_channels=4,

				kernel_size=(1,1),										#	It's	only	the	filter	height	and	width.

				activation_fn=tf.nn.relu,

				stride=(1,	1),														#	Skips	the	stride	values	for	image_batch	and	input_channels.

				trainable=True)

#	It's	required	to	initialize	the	variables	used	in	convolution2d's	setup.

sess.run(tf.initialize_all_variables())

sess.run(conv2d)

The	output	from	executing	the	example	code	is:
	array([[[[	0.,	0.,	0.,	0.],

				[	166.44549561,	0.,	0.,	0.],

				[	171.00466919,	0.,	0.,	0.]],

				[[	28.54177475,	0.,	59.9046936,	0.],

				[	0.,	124.69891357,	0.,	0.],

				[	28.54177475,	0.,	59.9046936,	0.]],

				[[	171.00466919,	0.,	0.,	0.],

				[	166.44549561,	0.,	0.,	0.],

				[	0.,	0.,	0.,	0.]]]],	dtype=float32)

This	example	sets	up	a	full	convolution	against	a	batch	of	a	single	image.	All	the
parameters	are	based	off	of	the	steps	done	throughout	this	chapter.	The	main	difference	is
that	tf.contrib.layers.convolution2d	does	a	large	amount	of	setup	without	having	to	write	it	all
again.	This	can	be	a	great	time	saving	layer	for	advanced	users.

NOTE:	tf.to_float	should	not	be	used	if	the	input	is	an	image,	instead	use
tf.image.convert_image_dtype	which	will	properly	change	the	range	of	values	used	to	describe
colors.	In	this	example	code,	float	values	of	255.	were	used	which	aren’t	what	TensorFlow



expects	when	is	sees	an	image	using	float	values.	TensorFlow	expects	an	image	with
colors	described	as	floats	to	stay	in	the	range	of	 .

tf.contrib.layers.fully_connected
A	fully	connected	layer	is	one	where	every	input	is	connected	to	every	output.	This	is	a

fairly	common	layer	in	many	architectures	but	for	CNNs,	the	last	layer	is	quite	often	fully
connected.	The	tf.contrib.layers.fully_connected	layer	offers	a	great	short-hand	to	create	this
last	layer	while	following	best	practices.

Typical	fully	connected	layers	in	TensorFlow	are	often	in	the	format	of
tf.matmul(features,	weight)	+	bias	where	feature,	weight	and	bias	are	all	tensors.	This	short-hand
layer	will	do	the	same	thing	while	taking	care	of	the	intricacies	involved	in	managing	the
weight	and	bias	tensors.
features	=	tf.constant([

								[[1.2],	[3.4]]

				])

fc	=	tf.contrib.layers.fully_connected(features,	num_output_units=2)

#	It's	required	to	initialize	all	the	variables	first	or	there'll	be	an	error	about	precondition	failures.

sess.run(tf.initialize_all_variables())

sess.run(fc)

The	output	from	executing	the	example	code	is:
	array([[[-0.53210509,	0.74457598],

				[-1.50763106,	2.10963178]]],	dtype=float32)

This	example	created	a	fully	connected	layer	and	associated	the	input	tensor	with	each
neuron	of	the	output.	There	are	plenty	of	other	parameters	to	tweak	for	different	fully
connected	layers.

Layer	Input
Each	layer	serves	a	purpose	in	a	CNN	architecture.	It’s	important	to	understand	them	at

a	high	level	(at	least)	but	without	practice	they’re	easy	to	forget.	A	crucial	layer	in	any
neural	network	is	the	input	layer,	where	raw	input	is	sent	to	be	trained	and	tested.	For
object	recognition	and	classification,	the	input	layer	is	a	tf.nn.conv2d	layer	which	accepts
images.	The	next	step	is	to	use	real	images	in	training	instead	of	example	input	in	the	form
of	tf.constant	or	tf.range	variables.



Images	and	TensorFlow

TensorFlow	is	designed	to	support	working	with	images	as	input	to	neural	networks.
TensorFlow	supports	loading	common	file	formats	(JPG,	PNG),	working	in	different	color
spaces	(RGB,	RGBA)	and	common	image	manipulation	tasks.	TensorFlow	makes	it	easier
to	work	with	images	but	it’s	still	a	challenge.	The	largest	challenge	working	with	images
are	the	size	of	the	tensor	which	is	eventually	loaded.	Every	image	requires	a	tensor	the

same	size	as	the	image’s	 .	As	a	reminder,	channels
are	represented	as	a	rank	1	tensor	including	a	scalar	amount	of	color	in	each	channel.

A	red	RGB	pixel	in	TensorFlow	would	be	represented	with	the	following	tensor.
red	=	tf.constant([255,	0,	0])

Each	scalar	can	be	changed	to	make	the	pixel	another	color	or	a	mix	of	colors.	The	rank
1	tensor	of	a	pixel	is	in	the	format	of	[red,	green,	blue]	for	an	RGB	color	space.	All	the
pixels	in	an	image	are	stored	in	files	on	a	disk	which	need	to	be	read	into	memory	so
TensorFlow	may	operate	on	them.



Loading	images
TensorFlow	is	designed	to	make	it	easy	to	load	files	from	disk	quickly.	Loading	images

is	the	same	as	loading	any	other	large	binary	file	until	the	contents	are	decoded.	Loading
this	example	3x3	pixel	RGB	JPG	image	is	done	using	a	similar	process	to	loading	any
other	type	of	file.

#	The	match_filenames_once	will	accept	a	regex	but	there	is	no	need	for	this	example.

image_filename	=	"./images/chapter-05-object-recognition-and-classification/working-with-images/test-input-image.jpg"

filename_queue	=	tf.train.string_input_producer(

				tf.train.match_filenames_once(image_filename))

image_reader	=	tf.WholeFileReader()

_,	image_file	=	image_reader.read(filename_queue)

image	=	tf.image.decode_jpeg(image_file)

The	image,	which	is	assumed	to	be	located	in	a	relative	directory	from	where	this	code
is	ran.	An	input	producer	(tf.train.string_input_producer)	finds	the	files	and	adds	them	to	a
queue	for	loading.	Loading	an	image	requires	loading	the	entire	file	into	memory
(tf.WholeFileReader)	and	onces	a	file	has	been	read	(image_reader.read)	the	resulting	image	is
decoded	(tf.image.decode_jpeg).

Now	the	image	can	be	inspected,	since	there	is	only	one	file	by	that	name	the	queue	will
always	return	the	same	image.
sess.run(image)

The	output	from	executing	the	example	code	is:
	array([[[	0,	0,	0],

				[255,	255,	255],

				[254,	0,	0]],

				[[	0,	191,	0],

				[	3,	108,	233],

				[	0,	191,	0]],

				[[254,	0,	0],

				[255,	255,	255],

				[	0,	0,	0]]],	dtype=uint8)

Inspect	the	output	from	loading	an	image,	notice	that	it’s	a	fairly	simple	rank	3	tensor.
The	RGB	values	are	found	in	9	rank	1	tensors.	The	higher	rank	of	the	image	should	be
familiar	from	earlier	sections.	The	format	of	the	image	loaded	in	memory	is	now
[batch_size,	image_height,	image_width,	channels].

The	batch_size	in	this	example	is	1	because	there	are	no	batching	operations	happening.
Batching	of	input	is	covered	in	the	TensorFlow	documentation	with	a	great	amount	of
detail.	When	dealing	with	images,	note	the	amount	of	memory	required	to	load	the	raw
images.	If	the	images	are	too	large	or	too	many	are	loaded	in	a	batch,	the	system	may	stop
responding.

https://www.tensorflow.org/versions/master/how_tos/reading_data/index.html#batching


Image	Formats
It’s	important	to	consider	aspects	of	images	and	how	they	affect	a	model.	Consider	what

would	happen	if	a	network	is	trained	with	input	from	a	single	frame	of	a	RED	Weapon
Camera,	which	at	the	time	of	writing	this,	has	an	effective	pixel	count	of	6144x3160.	That’d
be	19,415,040	rank	one	tensors	with	3	dimensions	of	color	information.

Practically	speaking,	an	input	of	that	size	will	use	a	huge	amount	of	system	memory.
Training	a	CNN	takes	a	large	amount	of	time	and	loading	very	large	files	slow	it	down
more.	Even	if	the	increase	in	time	is	acceptable,	the	size	a	single	image	would	be	hard	to
fit	in	memory	on	the	majority	of	system’s	GPUs.

A	large	input	image	is	counterproductive	to	training	most	CNNs	as	well.	The	CNN	is
attempting	to	find	inherent	attributes	in	an	image,	which	are	unique	but	generalized	so	that
they	may	be	applied	to	other	images	with	similar	results.	Using	a	large	input	is	flooding	a
network	with	irrelevant	information	which	will	keep	from	generalizing	the	model.

In	the	Stanford	Dogs	Dataset	there	are	two	extremely	different	images	of	the	same	dog
breed	which	should	both	match	as	a	Pug.	Although	cute,	these	images	are	filled	with
useless	information	which	mislead	a	network	during	training.	For	example,	the	hat	worn
by	the	Pug	in	n02110958_4030.jpg	isn’t	a	feature	a	CNN	needs	to	learn	in	order	to	match
a	Pug.	Most	Pugs	prefer	pirate	hats	so	the	jester	hat	is	training	the	network	to	match	a	hat
which	most	Pugs	don’t	wear.

Highlighting	important	information	in	images	is	done	by	storing	them	in	an	appropriate
file	format	and	manipulating	them.	Different	formats	can	be	used	to	solve	different
problems	encountered	while	working	with	images.

JPEG	and	PNG
TensorFlow	has	two	image	formats	used	to	decode	image	data,	one	is	tf.image.decode_jpeg

and	the	other	is	tf.image.decode_png.	These	are	common	file	formats	in	computer	vision
applications	because	they’re	trivial	to	convert	other	formats	to.

Something	important	to	keep	in	mind,	JPEG	images	don’t	store	any	alpha	channel
information	and	PNG	images	do.	This	could	be	important	if	what	you’re	training	on
requires	alpha	information	(transparency).	An	example	usage	scenario	is	one	where
you’ve	manually	cut	out	some	pieces	of	an	image,	for	example,	irrelevant	jester	hats	on

http://www.red.com/products/weapon-dragon#tech-specs
http://vision.stanford.edu/aditya86/ImageNetDogs/


dogs.	Setting	those	pieces	to	black	would	make	them	seem	of	similar	importance	to	other
black	colored	items	in	the	image.	Setting	the	removed	hat	to	have	an	alpha	of	0	would
help	in	distinguishing	its	removal.

When	working	with	JPEG	images,	don’t	manipulate	them	too	much	because	it’ll	leave
artifacts.	Instead,	plan	to	take	raw	images	and	export	them	to	JPEG	while	doing	any
manipulation	needed.	Try	to	manipulate	images	before	loading	them	whenever	possible	to
save	time	in	training.

PNG	images	work	well	if	manipulation	is	required.	PNG	format	is	lossless	so	it’ll	keep
all	the	information	from	the	original	file	(unless	they’ve	been	resized	or	downsampled).
The	downside	to	PNGs	is	that	the	files	are	larger	than	their	JPEG	counterpart.

TFRecord
TensorFlow	has	a	built-in	file	format	designed	to	keep	binary	data	and	label	(category

for	training)	data	in	the	same	file.	The	format	is	called	TFRecord	and	the	format	requires	a
preprocessing	step	to	convert	images	to	a	TFRecord	format	before	training.	The	largest
benefit	is	keeping	each	input	image	in	the	same	file	as	the	label	associated	with	it.

Technically,	TFRecord	files	are	protobuf	formatted	files.	They	are	great	for	use	as	a
preprocessed	format	because	they	aren’t	compressed	and	can	be	loaded	into	memory
quickly.	In	this	example,	an	image	is	written	to	a	new	TFRecord	formatted	file	and	it’s
label	is	stored	as	well.
#	Reuse	the	image	from	earlier	and	give	it	a	fake	label

image_label	=	b'\x01'		#	Assume	the	label	data	is	in	a	one-hot	representation	(00000001)

#	Convert	the	tensor	into	bytes,	notice	that	this	will	load	the	entire	image	file

image_loaded	=	sess.run(image)

image_bytes	=	image_loaded.tobytes()

image_height,	image_width,	image_channels	=	image_loaded.shape

#	Export	TFRecord

writer	=	tf.python_io.TFRecordWriter("./output/training-image.tfrecord")

#	Don't	store	the	width,	height	or	image	channels	in	this	Example	file	to	save	space	but	not	required.

example	=	tf.train.Example(features=tf.train.Features(feature={

												'label':	tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_label])),

												'image':	tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_bytes]))

								}))

#	This	will	save	the	example	to	a	text	file	tfrecord

writer.write(example.SerializeToString())

writer.close()

The	label	is	in	a	format	known	as	one-hot	encoding	which	is	a	common	way	to	work
with	label	data	for	categorization	of	multi-class	data.	The	Stanford	Dogs	Dataset	is	being
treated	as	multi-class	data	because	the	dogs	are	being	categorized	as	a	single	breed	and	not
a	mix	of	breeds.	In	the	real	world,	a	multilabel	solution	would	work	well	to	predict	dog
breeds	because	it’d	be	capable	of	matching	a	dog	with	multiple	breeds.

In	the	example	code,	the	image	is	loaded	into	memory	and	converted	into	an	array	of
bytes.	The	bytes	are	then	added	to	the	tf.train.Example	file	which	are	serialized
SerializeToString	before	storing	to	disk.	Serialization	is	a	way	of	converting	the	in	memory

https://www.youtube.com/watch?v=Fk6kV5N1rzs
https://www.tensorflow.org/versions/master/how_tos/reading_data/index.html#preprocessing


object	into	a	format	safe	to	be	transferred	to	a	file.	The	serialized	example	is	now	saved	in
a	format	which	can	be	loaded	and	deserialized	back	to	the	example	format	saved	here.

Now	that	the	image	is	saved	as	a	TFRecord	it	can	be	loaded	again	but	this	time	from	the
TFRecord	file.	This	would	be	the	loading	required	in	a	training	step	to	load	the	image	and
label	for	training.	This	will	save	time	from	loading	the	input	image	and	its	corresponding
label	separately.
#	Load	TFRecord

tf_record_filename_queue	=	tf.train.string_input_producer(

				tf.train.match_filenames_once("./output/training-image.tfrecord"))

#	Notice	the	different	record	reader,	this	one	is	designed	to	work	with	TFRecord	files	which	may

#	have	more	than	one	example	in	them.

tf_record_reader	=	tf.TFRecordReader()

_,	tf_record_serialized	=	tf_record_reader.read(tf_record_filename_queue)

#	The	label	and	image	are	stored	as	bytes	but	could	be	stored	as	int64	or	float64	values	in	a

#	serialized	tf.Example	protobuf.

tf_record_features	=	tf.parse_single_example(

				tf_record_serialized,

				features={

								'label':	tf.FixedLenFeature([],	tf.string),

								'image':	tf.FixedLenFeature([],	tf.string),

				})

#	Using	tf.uint8	because	all	of	the	channel	information	is	between	0-255

tf_record_image	=	tf.decode_raw(

				tf_record_features['image'],	tf.uint8)

#	Reshape	the	image	to	look	like	the	image	saved,	not	required

tf_record_image	=	tf.reshape(

				tf_record_image,

				[image_height,	image_width,	image_channels])

#	Use	real	values	for	the	height,	width	and	channels	of	the	image	because	it's	required

#	to	reshape	the	input.

tf_record_label	=	tf.cast(tf_record_features['label'],	tf.string)

At	first,	the	file	is	loaded	in	the	same	way	as	any	other	file.	The	main	difference	is	that
the	file	is	then	read	using	a	TFRecordReader.	Instead	of	decoding	the	image,	the	TFRecord	is
parsed	tf.parse_single_example	and	then	the	image	is	read	as	raw	bytes	(tf.decode_raw).

After	the	file	is	loaded,	it	is	reshaped	(tf.reshape)	in	order	to	keep	it	in	the	same	layout	as
tf.nn.conv2d	expects	it	[image_height,	image_width,	image_channels].	It’d	be	save	to	expand	the
dimensions	(tf.expand)	in	order	to	add	in	the	batch_size	dimension	to	the	input_batch.

In	this	case	a	single	image	is	in	the	TFRecord	but	these	record	files	support	multiple
examples	being	written	to	them.	It’d	be	safe	to	have	a	single	TFRecord	file	which	stores
an	entire	training	set	but	splitting	up	the	files	doesn’t	hurt.

The	following	code	is	useful	to	check	that	the	image	saved	to	disk	is	the	same	as	the
image	which	was	loaded	from	TensorFlow.
sess.run(tf.equal(image,	tf_record_image))

The	output	from	executing	the	example	code	is:
	array([[[	True,	True,	True],

				[	True,	True,	True],

				[	True,	True,	True]],

				[[	True,	True,	True],

				[	True,	True,	True],

				[	True,	True,	True]],



				[[	True,	True,	True],

				[	True,	True,	True],

				[	True,	True,	True]]],	dtype=bool)

All	of	the	attributes	of	the	original	image	and	the	image	loaded	from	the	TFRecord	file
are	the	same.	To	be	sure,	load	the	label	from	the	TFRecord	file	and	check	that	it	is	the
same	as	the	one	saved	earlier.
#	Check	that	the	label	is	still	0b00000001.

sess.run(tf_record_label)

The	output	from	executing	the	example	code	is:
	b'\x01'

Creating	a	file	that	stores	both	the	raw	image	data	and	the	expected	output	label	will
save	complexities	during	training.	It’s	not	required	to	use	TFRecord	files	but	it’s	highly
recommend	when	working	with	images.	If	it	doesn’t	work	well	for	a	workflow,	it’s	still
recommended	to	preprocess	images	and	save	them	before	training.	Manipulating	an	image
each	time	it’s	loaded	is	not	recommended.



Image	Manipulation
CNNs	work	well	when	they’re	given	a	large	amount	of	diverse	quality	training	data.

Images	capture	complex	scenes	in	a	way	which	visually	communicates	an	intended
subject.	In	the	Stanford	Dog’s	Dataset,	it’s	important	that	the	images	visually	highlight	the
importance	of	dogs	in	the	picture.	A	picture	with	a	dog	clearly	visible	in	the	center	is
considered	more	valuable	than	one	with	a	dog	in	the	background.

Not	all	datasets	have	the	most	valuable	images.	The	following	are	two	images	from	the
Stanford	Dogs	Dataset,	which	are	supposed	to	highlight	dog	breeds.	The	image	on	the	left
n02113978_3480.jpg	highlights	important	attributes	of	a	typical	Mexican	Hairless	Dog,	while
the	image	on	the	right	n02113978_1030.jpg	highlights	the	look	of	inebriated	party	goers
scaring	a	Mexican	Hairless	Dog.	The	image	on	the	right	n02113978_1030.jpg	is	filled	with
irrelevant	information	which	may	train	a	CNN	to	categorize	party	goer	faces	instead	of
Mexican	Hairless	Dog	breeds.	Images	like	this	may	still	include	an	image	of	a	dog	and
could	be	manipulated	to	highlight	the	dog	instead	of	people.

Image	manipulation	is	best	done	as	a	preprocessing	step	in	most	scenarios.	An	image
can	be	cropped,	resized	and	the	color	levels	adjusted.	On	the	other	hand,	there	is	an
important	use	case	for	manipulating	an	image	while	training.	After	an	image	is	loaded,	it
can	be	flipped	or	distorted	to	diversify	the	input	training	information	used	with	the
network.	This	step	adds	further	processing	time	but	helps	with	overfitting.

TensorFlow	is	not	designed	as	an	image	manipulation	framework.	There	are	libraries
available	in	Python	which	support	more	image	manipulation	than	TensorFlow	(PIL	and
OpenCV).	For	TensorFlow,	we’ll	summarize	a	few	useful	image	manipulation	features
available	which	are	useful	in	training	CNNs.

Cropping
Cropping	an	image	will	remove	certain	regions	of	the	image	without	keeping	any

information.	Cropping	is	similar	to	tf.slice	where	a	section	of	a	tensor	is	cut	out	from	the
full	tensor.	Cropping	an	input	image	for	a	CNN	can	be	useful	if	there	is	extra	input	along	a
dimension	which	isn’t	required.	For	example,	cropping	dog	pictures	where	the	dog	is	in
the	center	of	the	images	to	reduce	the	size	of	the	input.
sess.run(tf.image.central_crop(image,	0.1))

The	output	from	executing	the	example	code	is:

http://vision.stanford.edu/aditya86/ImageNetDogs/
http://www.pythonware.com/products/pil/
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_tutorials.html


	array([[[	3,	108,	233]]],	dtype=uint8)

The	example	code	uses	tf.image.central_crop	to	crop	out	10%	of	the	image	and	return	it.
This	method	always	returns	based	on	the	center	of	the	image	being	used.

Cropping	is	usually	done	in	preprocessing	but	it	can	be	useful	when	training	if	the
background	is	useful.	When	the	background	is	useful	then	cropping	can	be	done	while
randomizing	the	center	offset	of	where	the	crop	begins.
#	This	crop	method	only	works	on	real	value	input.

real_image	=	sess.run(image)

bounding_crop	=	tf.image.crop_to_bounding_box(

				real_image,	offset_height=0,	offset_width=0,	target_height=2,	target_width=1)

sess.run(bounding_crop)

The	output	from	executing	the	example	code	is:
	array([[[	0,	0,	0]],

				[[	0,	191,	0]]],	dtype=uint8)

The	example	code	uses	tf.image.crop_to_bounding_box	in	order	to	crop	the	image	starting	at
the	upper	left	pixel	located	at	(0,	0).	Currently,	the	function	only	works	with	a	tensor
which	has	a	defined	shape	so	an	input	image	needs	to	be	executed	on	the	graph	first.

Padding
Pad	an	image	with	zeros	in	order	to	make	it	the	same	size	as	an	expected	image.	This

can	be	accomplished	using	tf.pad	but	TensorFlow	has	another	function	useful	for	resizing
images	which	are	too	large	or	too	small.	The	method	will	pad	an	image	which	is	too	small
including	zeros	along	the	edges	of	the	image.	Often,	this	method	is	used	to	resize	small
images	because	any	other	method	of	resizing	with	distort	the	image.
#	This	padding	method	only	works	on	real	value	input.

real_image	=	sess.run(image)

pad	=	tf.image.pad_to_bounding_box(

				real_image,	offset_height=0,	offset_width=0,	target_height=4,	target_width=4)

sess.run(pad)

The	output	from	executing	the	example	code	is:
	array([[[	0,	0,	0],

				[255,	255,	255],

				[254,	0,	0],

				[	0,	0,	0]],

				[[	0,	191,	0],

				[	3,	108,	233],

				[	0,	191,	0],

				[	0,	0,	0]],

				[[254,	0,	0],

				[255,	255,	255],

				[	0,	0,	0],

				[	0,	0,	0]],

				[[	0,	0,	0],

				[	0,	0,	0],

				[	0,	0,	0],

				[	0,	0,	0]]],	dtype=uint8)

This	example	code	increases	the	images	height	by	one	pixel	and	its	width	by	a	pixel	as
well.	The	new	pixels	are	all	set	to	0.	Padding	in	this	manner	is	useful	for	scaling	up	an
image	which	is	too	small.	This	can	happen	if	there	are	images	in	the	training	set	with	a



mix	of	aspect	ratios.	TensorFlow	has	a	useful	shortcut	for	resizing	images	which	don’t
match	the	same	aspect	ratio	using	a	combination	of	pad	and	crop.
#	This	padding	method	only	works	on	real	value	input.

real_image	=	sess.run(image)

crop_or_pad	=	tf.image.resize_image_with_crop_or_pad(

				real_image,	target_height=2,	target_width=5)

sess.run(crop_or_pad)

The	output	from	executing	the	example	code	is:
	array([[[	0,	0,	0],

				[	0,	0,	0],

				[255,	255,	255],

				[254,	0,	0],

				[	0,	0,	0]],

				[[	0,	0,	0],

				[	0,	191,	0],

				[	3,	108,	233],

				[	0,	191,	0],

				[	0,	0,	0]]],	dtype=uint8)

The	real_image	has	been	reduced	in	height	to	be	2	pixels	tall	and	the	width	has	been
increased	by	padding	the	image	with	zeros.	This	function	works	based	on	the	center	of	the
image	input.

Flipping
Flipping	an	image	is	exactly	what	it	sounds	like.	Each	pixel’s	location	is	reversed

horizontally	or	vertically.	Technically	speaking,	flopping	is	the	term	used	when	flipping	an
image	vertically.	Terms	aside,	flipping	images	is	useful	with	TensorFlow	to	give	different
perspectives	of	the	same	image	for	training.	For	example,	a	picture	of	an	Australian
Shepherd	with	crooked	left	ear	could	be	flipped	in	order	to	allow	matching	of	crooked
right	ears.

TensorFlow	has	functions	to	flip	images	vertically,	horizontally	and	choose	randomly.
The	ability	to	randomly	flip	an	image	is	a	useful	method	to	keep	from	overfitting	a	model
to	flipped	versions	of	images.
top_left_pixels	=	tf.slice(image,	[0,	0,	0],	[2,	2,	3])

flip_horizon	=	tf.image.flip_left_right(top_left_pixels)

flip_vertical	=	tf.image.flip_up_down(flip_horizon)

sess.run([top_left_pixels,	flip_vertical])

The	output	from	executing	the	example	code	is:
	[array([[[	0,	0,	0],

				[255,	255,	255]],

				[[	0,	191,	0],

				[	3,	108,	233]]],	dtype=uint8),	array([[[	3,	108,	233],

				[	0,	191,	0]],

				[[255,	255,	255],

				[	0,	0,	0]]],	dtype=uint8)]

This	example	code	flips	a	subset	of	the	image	horizontally	and	then	vertically.	The
subset	is	used	with	tf.slice	because	the	original	image	flipped	returns	the	same	images	(for
this	example	only).	The	subset	of	pixels	illustrates	the	change	which	occurs	when	an
image	is	flipped.	tf.image.flip_left_right	and	tf.image.flip_up_down	both	operate	on	tensors



which	are	not	limited	to	images.	These	will	flip	an	image	a	single	time,	randomly	flipping
an	image	is	done	using	a	separate	set	of	functions.
top_left_pixels	=	tf.slice(image,	[0,	0,	0],	[2,	2,	3])

random_flip_horizon	=	tf.image.random_flip_left_right(top_left_pixels)

random_flip_vertical	=	tf.image.random_flip_up_down(random_flip_horizon)

sess.run(random_flip_vertical)

The	output	from	executing	the	example	code	is:
	array([[[	3,	108,	233],

				[	0,	191,	0]],

				[[255,	255,	255],

				[	0,	0,	0]]],	dtype=uint8)

This	example	does	the	same	logic	as	the	example	before	except	that	the	output	is
random.	Every	time	this	runs,	a	different	output	is	expected.	There	is	a	parameter	named
seed	which	may	be	used	to	control	how	random	the	flipping	occurs.

Saturation	and	Balance
Images	which	are	found	on	the	internet	are	often	edited	in	advance.	For	instance,	many

of	the	images	found	in	the	Stanford	Dogs	dataset	have	too	much	saturation	(lots	of	color).
When	an	edited	image	is	used	for	training,	it	may	mislead	a	CNN	model	into	finding
patterns	which	are	related	to	the	edited	image	and	not	the	content	in	the	image.

TensorFlow	has	useful	functions	which	help	in	training	on	images	by	changing	the
saturation,	hue,	contrast	and	brightness.	The	functions	allow	for	simple	manipulation	of
these	image	attributes	as	well	as	randomly	altering	these	attributes.	The	random	altering	is
useful	in	training	in	for	the	same	reason	randomly	flipping	an	image	is	useful.	The	random
attribute	changes	help	a	CNN	be	able	to	accurately	match	a	feature	in	images	which	have
been	edited	or	were	taken	under	different	lighting.
example_red_pixel	=	tf.constant([254.,	2.,	15.])

adjust_brightness	=	tf.image.adjust_brightness(example_red_pixel,	0.2)

sess.run(adjust_brightness)

The	output	from	executing	the	example	code	is:
	array([	254.19999695,	2.20000005,	15.19999981],	dtype=float32)

This	example	brightens	a	single	pixel,	which	is	primarily	red,	with	a	delta	of	0.2.
Unfortunately,	in	the	current	version	of	TensorFlow	0.9,	this	method	doesn’t	work	well
with	a	tf.uint8	input.	It’s	best	to	avoid	using	this	when	possible	and	preprocess	brightness
changes.
adjust_contrast	=	tf.image.adjust_contrast(image,	-.5)

sess.run(tf.slice(adjust_contrast,	[1,	0,	0],	[1,	3,	3]))

The	output	from	executing	the	example	code	is:
	array([[[170,	71,	124],

				[168,	112,	7],

				[170,	71,	124]]],	dtype=uint8)

The	example	code	changes	the	contrast	by	-0.5	which	makes	the	new	version	of	the



image	fairly	unrecognizable.	Adjusting	contrast	is	best	done	in	small	increments	to	keep
from	blowing	out	an	image.	Blowing	out	an	image	means	the	same	thing	as	saturating	a
neuron,	it	reached	its	maximum	value	and	can’t	be	recovered.	With	contrast	changes,	an
image	can	become	completely	white	and	completely	black	from	the	same	adjustment.

The	tf.slice	operation	is	for	brevity,	highlighting	one	of	the	pixels	which	has	changed.	It
is	not	required	when	running	this	operation.
adjust_hue	=	tf.image.adjust_hue(image,	0.7)

sess.run(tf.slice(adjust_hue,	[1,	0,	0],	[1,	3,	3]))

The	output	from	executing	the	example	code	is:
	array([[[191,	38,	0],

				[	62,	233,	3],

				[191,	38,	0]]],	dtype=uint8)

The	example	code	adjusts	the	hue	found	in	the	image	to	make	it	more	colorful.	The
adjustment	accepts	a	delta	parameter	which	controls	the	amount	of	hue	to	adjust	in	the
image.
adjust_saturation	=	tf.image.adjust_saturation(image,	0.4)

sess.run(tf.slice(adjust_saturation,	[1,	0,	0],	[1,	3,	3]))

The	output	from	executing	the	example	code	is:
	array([[[114,	191,	114],

				[141,	183,	233],

				[114,	191,	114]]],	dtype=uint8)

The	code	is	similar	to	adjusting	the	contrast.	It	is	common	to	oversaturate	an	image	in
order	to	identify	edges	because	the	increased	saturation	highlights	changes	in	colors.



Colors
CNNs	are	commonly	trained	using	images	with	a	single	color.	When	an	image	has	a

single	color	it	is	said	to	use	a	grayscale	colorspace	meaning	it	uses	a	single	channel	of
colors.	For	most	computer	vision	related	tasks,	using	grayscale	is	reasonable	because	the
shape	of	an	image	can	be	seen	without	all	the	colors.	The	reduction	in	colors	equates	to	a
quicker	to	train	image.	Instead	of	a	3	component	rank	1	tensor	to	describe	each	color
found	with	RGB,	a	grayscale	image	requires	a	single	component	rank	1	tensor	to	describe
the	amount	of	gray	found	in	the	image.

Although	grayscale	has	benefits,	it’s	important	to	consider	applications	which	require	a
distinction	based	on	color.	Color	in	images	is	challenging	to	work	with	in	most	computer
vision	because	it	isn’t	easy	to	mathematically	define	the	similarity	of	two	RGB	colors.	In
order	to	use	colors	in	CNN	training,	it’s	useful	to	convert	the	colorspace	the	image	is
natively	in.

Grayscale
Grayscale	has	a	single	component	to	it	and	has	the	same	range	of	color	as	RGB	

.
gray	=	tf.image.rgb_to_grayscale(image)

sess.run(tf.slice(gray,	[0,	0,	0],	[1,	3,	1]))

The	output	from	executing	the	example	code	is:
	array([[[	0],

				[255],

				[	76]]],	dtype=uint8)

This	example	converted	the	RGB	image	into	grayscale.	The	tf.slice	operation	took	the
top	row	of	pixels	out	to	investigate	how	their	color	has	changed.	The	grayscale	conversion
is	done	by	averaging	all	the	color	values	for	a	pixel	and	setting	the	amount	of	grayscale	to
be	the	average.

HSV
Hue,	saturation	and	value	are	what	make	up	HSV	colorspace.	This	space	is	represented

with	a	3	component	rank	1	tensor	similar	to	RGB.	HSV	is	not	similar	to	RGB	in	what	it
measures,	it’s	measuring	attributes	of	an	image	which	are	closer	to	human	perception	of
color	than	RGB.	It	is	sometimes	called	HSB,	where	the	B	stands	for	brightness.
hsv	=	tf.image.rgb_to_hsv(tf.image.convert_image_dtype(image,	tf.float32))

sess.run(tf.slice(hsv,	[0,	0,	0],	[3,	3,	3]))

The	output	from	executing	the	example	code	is:
	array([[[	0.,	0.,	0.],

				[	0.,	0.,	1.],

				[	0.,	1.,	0.99607849]],

				[[	0.33333334,	1.,	0.74901962],

				[	0.59057975,	0.98712444,	0.91372555],

				[	0.33333334,	1.,	0.74901962]],

				[[	0.,	1.,	0.99607849],



				[	0.,	0.,	1.],

				[	0.,	0.,	0.]]],	dtype=float32)

RGB
RGB	is	the	colorspace	which	has	been	used	in	all	the	example	code	so	far.	It’s	broken

up	into	a	3	component	rank	1	tensor	which	includes	the	amount	of	red	 ,	green	
	and	blue	 .	Most	images	are	already	in	RGB	but	TensorFlow	has

builtin	functions	in	case	the	images	are	in	another	colorspace.
rgb_hsv	=	tf.image.hsv_to_rgb(hsv)

rgb_grayscale	=	tf.image.grayscale_to_rgb(gray)

The	example	code	is	straightforward	except	that	the	conversion	from	grayscale	to	RGB
doesn’t	make	much	sense.	RGB	expects	three	colors	while	grayscale	only	has	one.	When
the	conversion	occurs,	the	RGB	values	are	filled	with	the	same	value	which	is	found	in	the
grayscale	pixel.

Lab
Lab	is	not	a	colorspace	which	TensorFlow	has	native	support	for.	It’s	a	useful

colorspace	because	it	can	map	to	a	larger	number	of	perceivable	colors	than	RGB.
Although	TensorFlow	doesn’t	support	this	natively,	it	is	a	colorspace,	which	is	often	used
in	professional	settings.	Another	Python	library	python-colormath	has	support	for	Lab
conversion	as	well	as	other	colorspaces	not	described	here.

The	largest	benefit	using	a	Lab	colorspace	is	it	maps	closer	to	humans	perception	of	the
difference	in	colors	than	RGB	or	HSV.	The	euclidean	distance	between	two	colors	in	a
Lab	colorspace	are	somewhat	representative	of	how	different	the	colors	look	to	a	human.

Casting	Images
In	these	examples,	tf.to_float	is	often	used	in	order	to	illustrate	changing	an	image’s

type	to	another	format.	For	examples,	this	works	OK	but	TensorFlow	has	a	built	in
function	to	properly	scale	values	as	they	change	types.	tf.image.convert_image_dtype(image,
dtype,	saturate=False)	is	a	useful	shortcut	to	change	the	type	of	an	image	from	tf.uint8	to
tf.float.

http://python-colormath.readthedocs.io/en/latest/


CNN	Implementation

Object	recognition	and	categorization	using	TensorFlow	required	a	basic	understanding
of	convolutions	(for	CNNs),	common	layers	(non-linearity,	pooling,	fc),	image	loading,
image	manipulation	and	colorspaces.	With	these	areas	covered,	it’s	possible	to	build	a
CNN	model	for	image	recognition	and	classification	using	TensorFlow.	In	this	case,	the
model	is	a	dataset	provided	by	Stanford	which	includes	pictures	of	dogs	and	their
corresponding	breed.	The	network	needs	to	train	on	these	pictures	then	be	judged	on	how
well	it	can	guess	a	dog’s	breed	based	on	a	picture.

The	network	architecture	follows	a	simplified	version	of	Alex	Krizhevsky’s	AlexNet
without	all	of	AlexNet’s	layers.	This	architecture	was	described	earlier	in	the	chapter	as
the	network	which	won	ILSVRC’12	top	challenge.	The	network	uses	layers	and
techniques	familiar	to	this	chapter	which	are	similar	to	the	TensorFlow	provided	tutorial
on	CNNs.

The	network	described	in	this	section	including	the	output	TensorShape	after	each	layer.
The	layers	are	read	from	left	to	right	and	top	to	bottom	where	related	layers	are	grouped
together.	As	the	input	progresses	further	into	the	network,	its	height	and	width	are	reduced
while	its	depth	is	increased.	The	increase	in	depth	reduces	the	computation	required	to	use
the	network.

https://code.google.com/p/cuda-convnet/
https://www.tensorflow.org/versions/master/tutorials/deep_cnn/index.html


Stanford	Dogs	Dataset
The	dataset	used	for	training	this	model	can	be	found	on	Stanford’s	computer	vision	site

http://vision.stanford.edu/aditya86/ImageNetDogs/.	Training	the	model	requires
downloading	relevant	data.	After	downloading	the	Zip	archive	of	all	the	images,	extract
the	archive	into	a	new	directory	called	imagenet-dogs	in	the	same	directory	as	the	code
building	the	model.

The	Zip	archive	provided	by	Stanford	includes	pictures	of	dogs	organized	into	120
different	breeds.	The	goal	of	this	model	is	to	train	on	80%	of	the	dog	breed	images	and
then	test	using	the	remaining	20%.	If	this	were	a	production	model,	part	of	the	raw	data
would	be	reserved	for	cross-validation	of	the	results.	Cross-validation	is	a	useful	step	to
validate	the	accuracy	of	a	model	but	this	model	is	designed	to	illustrate	the	process	and
not	for	competition.

The	organization	of	the	archive	follows	ImageNet’s	practices.	Each	dog	breed	is	a
directory	name	similar	to	n02085620-Chihuahua	where	the	second	half	of	the	directory	name	is
the	dog’s	breed	in	English	(Chihuahua).	Within	each	directory	there	is	a	variable	amount	of
images	related	to	that	breed.	Each	image	is	in	JPEG	format	(RGB)	and	of	varying	sizes.
The	different	sized	images	is	a	challenge	because	TensorFlow	is	expecting	tensors	of	the
same	dimensionality.

http://vision.stanford.edu/aditya86/ImageNetDogs/


Convert	Images	to	TFRecords
The	raw	images	organized	in	a	directory	doesn’t	work	well	for	training	because	the

images	are	not	of	the	same	size	and	their	dog	breed	isn’t	included	in	the	file.	Converting
the	images	into	TFRecord	files	in	advance	of	training	will	help	keep	training	fast	and
simplify	matching	the	label	of	the	image.	Another	benefit	is	that	the	training	and	testing
related	images	can	be	separated	in	advance.	Separated	training	and	testing	datasets	allows
continual	testing	of	a	model	while	training	is	occurring	using	checkpoint	files.

Converting	the	images	will	require	changing	their	colorspace	into	grayscale,	resizing
the	images	to	be	of	uniform	size	and	attaching	the	label	to	each	image.	This	conversion
should	only	happen	once	before	training	commences	and	likely	will	take	a	long	time.
import	glob

image_filenames	=	glob.glob("./imagenet-dogs/n02*/*.jpg")

image_filenames[0:2]

The	output	from	executing	the	example	code	is:
	['./imagenet-dogs/n02085620-Chihuahua/n02085620_10074.jpg',

				'./imagenet-dogs/n02085620-Chihuahua/n02085620_10131.jpg']

An	example	of	how	the	archive	is	organized.	The	glob	module	allows	directory	listing
which	shows	the	structure	of	the	files	which	exist	in	the	dataset.	The	eight	digit	number	is
tied	to	the	WordNet	ID	of	each	category	used	in	ImageNet.	ImageNet	has	a	browser	for
image	details	which	accepts	the	WordNet	ID,	for	example	the	Chihuahua	example	can	be
accessed	via	http://www.image-net.org/synset?wnid=n02085620.
from	itertools	import	groupby

from	collections	import	defaultdict

training_dataset	=	defaultdict(list)

testing_dataset	=	defaultdict(list)

#	Split	up	the	filename	into	its	breed	and	corresponding	filename.	The	breed	is	found	by	taking	the	directory	name

image_filename_with_breed	=	map(lambda	filename:	(filename.split("/")[2],	filename),	image_filenames

#	Group	each	image	by	the	breed	which	is	the	0th	element	in	the	tuple	returned	above

for	dog_breed,	breed_images	in	groupby(image_filename_with_breed,	lambda	x:	x[0]):

				#	Enumerate	each	breed's	image	and	send	~20%	of	the	images	to	a	testing	set

				for	i,	breed_image	in	enumerate(breed_images):

								if	i	%	5	==	0:

												testing_dataset[dog_breed].append(breed_image[1])

								else:

												training_dataset[dog_breed].append(breed_image[1])

				#	Check	that	each	breed	includes	at	least	18%	of	the	images	for	testing

				breed_training_count	=	len(training_dataset[dog_breed])

				breed_testing_count	=	len(testing_dataset[dog_breed])

				assert	round(breed_testing_count	/	(breed_training_count	+	breed_testing_count),	2)	>	0.18,	"Not	enough	testing	images."

This	example	code	organized	the	directory	and	images	(‘./imagenet-dogs/n02085620-
Chihuahua/n02085620_10131.jpg’)	into	two	dictionaries	related	to	each	breed	including
all	the	images	for	that	breed.	Now	each	dictionary	would	include	Chihuahua	images	in	the
following	format:

training_dataset["n02085620-Chihuahua"]	=	["n02085620_10131.jpg",	...]

Organizing	the	breeds	into	these	dictionaries	simplifies	the	process	of	selecting	each

http://wordnet.princeton.edu/wordnet/documentation/
http://www.image-net.org/synset?wnid=n02085620


type	of	image	and	categorizing	it.	During	preprocessing,	all	the	image	breeds	can	be
iterated	over	and	their	images	opened	based	on	the	filenames	in	the	list.
def	write_records_file(dataset,	record_location):

				"""

				Fill	a	TFRecords	file	with	the	images	found	in	`dataset`	and	include	their	category.

				Parameters

				----------

				dataset	:	dict(list)

						Dictionary	with	each	key	being	a	label	for	the	list	of	image	filenames	of	its	value.

				record_location	:	str

						Location	to	store	the	TFRecord	output.

				"""

				writer	=	None

				#	Enumerating	the	dataset	because	the	current	index	is	used	to	breakup	the	files	if	they	get	over	100

				#	images	to	avoid	a	slowdown	in	writing.

				current_index	=	0

				for	breed,	images_filenames	in	dataset.items():

								for	image_filename	in	images_filenames:

												if	current_index	%	100	==	0:

																if	writer:

																				writer.close()

																record_filename	=	"{record_location}-{current_index}.tfrecords".format(

																				record_location=record_location,

																				current_index=current_index)

																writer	=	tf.python_io.TFRecordWriter(record_filename)

												current_index	+=	1

												image_file	=	tf.read_file(image_filename)

												#	In	ImageNet	dogs,	there	are	a	few	images	which	TensorFlow	doesn't	recognize	as	JPEGs.	This

												#	try/catch	will	ignore	those	images.

												try:

																image	=	tf.image.decode_jpeg(image_file)

												except:

																print(image_filename)

																continue

												#	Converting	to	grayscale	saves	processing	and	memory	but	isn't	required.

												grayscale_image	=	tf.image.rgb_to_grayscale(image)

												resized_image	=	tf.image.resize_images(grayscale_image,	250,	151)

												#	tf.cast	is	used	here	because	the	resized	images	are	floats	but	haven't	been	converted	into

												#	image	floats	where	an	RGB	value	is	between	[0,1).

												image_bytes	=	sess.run(tf.cast(resized_image,	tf.uint8)).tobytes()

												#	Instead	of	using	the	label	as	a	string,	it'd	be	more	efficient	to	turn	it	into	either	an

												#	integer	index	or	a	one-hot	encoded	rank	one	tensor.

												#	https://en.wikipedia.org/wiki/One-hot

												image_label	=	breed.encode("utf-8")

												example	=	tf.train.Example(features=tf.train.Features(feature={

																'label':	tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_label])),

																'image':	tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_bytes]))

												}))

												writer.write(example.SerializeToString())

				writer.close()

write_records_file(testing_dataset,	"./output/testing-images/testing-image")

write_records_file(training_dataset,	"./output/training-images/training-image")

The	example	code	is	opening	each	image,	converting	it	to	grayscale,	resizing	it	and	then
adding	it	to	a	TFRecord	file.	The	logic	isn’t	different	from	earlier	examples	except	that	the
operation	tf.image.resize_images	is	used.	The	resizing	operation	will	scale	every	image	to	be
the	same	size	even	if	it	distorts	the	image.	For	example,	if	an	image	in	portrait	orientation
and	an	image	in	landscape	orientation	were	both	resized	with	this	code	then	the	output	of



the	landscape	image	would	become	distorted.	These	distortions	are	caused	because
tf.image.resize_images	doesn’t	take	into	account	aspect	ratio	(the	ratio	of	height	to	width)	of
an	image.	To	properly	resize	a	set	of	images,	cropping	or	padding	is	a	preferred	method
because	it	ignores	the	aspect	ratio	stopping	distortions.



Load	Images
Once	the	testing	and	training	dataset	have	been	transformed	to	TFRecord	format,	they

can	be	read	as	TFRecords	instead	of	as	JPEG	images.	The	goal	is	to	load	the	images	a	few
at	a	time	with	their	corresponding	labels.
filename_queue	=	tf.train.string_input_producer(

				tf.train.match_filenames_once("./output/training-images/*.tfrecords"))

reader	=	tf.TFRecordReader()

_,	serialized	=	reader.read(filename_queue)

features	=	tf.parse_single_example(

				serialized,

				features={

								'label':	tf.FixedLenFeature([],	tf.string),

								'image':	tf.FixedLenFeature([],	tf.string),

				})

record_image	=	tf.decode_raw(features['image'],	tf.uint8)

#	Changing	the	image	into	this	shape	helps	train	and	visualize	the	output	by	converting	it	to

#	be	organized	like	an	image.

image	=	tf.reshape(record_image,	[250,	151,	1])

label	=	tf.cast(features['label'],	tf.string)

min_after_dequeue	=	10

batch_size	=	3

capacity	=	min_after_dequeue	+	3	*	batch_size

image_batch,	label_batch	=	tf.train.shuffle_batch(

				[image,	label],	batch_size=batch_size,	capacity=capacity,	min_after_dequeue=min_after_dequeue)

This	example	code	loads	training	images	by	matching	all	the	TFRecord	files	found	in
the	training	directory.	Each	TFRecord	includes	multiple	images	but	the
tf.parse_single_example	will	take	a	single	example	out	of	the	file.	The	batching	operation
discussed	earlier	is	used	to	train	multiple	images	simultaneously.	Batching	multiple
images	is	useful	because	these	operations	are	designed	to	work	with	multiple	images	the
same	as	with	a	single	image.	The	primary	requirement	is	that	the	system	have	enough
memory	to	work	with	them	all.

With	the	images	available	in	memory,	the	next	step	is	to	create	the	model	used	for
training	and	testing.



Model
The	model	used	is	similar	to	the	mnist	convolution	example	which	is	often	used	in

tutorials	describing	convolutional	neural	networks	in	TensorFlow.	The	architecture	of	this
model	is	simple	yet	it	performs	well	for	illustrating	different	techniques	used	in	image
classification	and	recognition.	An	advanced	model	may	borrow	more	from	Alex
Krizhevsky’s	AlexNet	design	that	includes	more	convolution	layers.
#	Converting	the	images	to	a	float	of	[0,1)	to	match	the	expected	input	to	convolution2d

float_image_batch	=	tf.image.convert_image_dtype(image_batch,	tf.float32)

conv2d_layer_one	=	tf.contrib.layers.convolution2d(

				float_image_batch,

				num_output_channels=32,					#	The	number	of	filters	to	generate

				kernel_size=(5,5),										#	It's	only	the	filter	height	and	width.

				activation_fn=tf.nn.relu,

				weight_init=tf.random_normal,

				stride=(2,	2),

				trainable=True)

pool_layer_one	=	tf.nn.max_pool(conv2d_layer_one,

				ksize=[1,	2,	2,	1],

				strides=[1,	2,	2,	1],

				padding='SAME')

#	Note,	the	first	and	last	dimension	of	the	convolution	output	hasn't	changed	but	the

#	middle	two	dimensions	have.

conv2d_layer_one.get_shape(),	pool_layer_one.get_shape()

The	output	from	executing	the	example	code	is:
	(TensorShape([Dimension(3),	Dimension(125),	Dimension(76),	Dimension(32)]),

				TensorShape([Dimension(3),	Dimension(63),	Dimension(38),	Dimension(32)]))

The	first	layer	in	the	model	is	created	using	the	shortcut	tf.contrib.layers.convolution2d.
It’s	important	to	note	that	the	weight_init	is	set	to	be	a	random	normal,	meaning	that	the
first	set	of	filters	are	filled	with	random	numbers	following	a	normal	distribution	(this
parameter	is	renamed	in	TensorFlow	0.9	to	be	weights_initializer).	The	filters	are	set	as
trainable	so	that	as	the	network	is	fed	information,	these	weights	are	adjusted	to	improve
the	accuracy	of	the	model.

After	a	convolution	is	applied	to	the	images,	the	output	is	downsized	using	a	max_pool
operation.	After	the	operation,	the	output	shape	of	the	convolution	is	reduced	in	half	due
to	the	ksize	used	in	the	pooling	and	the	strides.	The	reduction	didn’t	change	the	number	of
filters	(output	channels)	or	the	size	of	the	image	batch.	The	components	that	were	reduced
dealt	with	the	height	and	width	of	the	image	(filter).
conv2d_layer_two	=	tf.contrib.layers.convolution2d(

				pool_layer_one,

				num_output_channels=64,								#	More	output	channels	means	an	increase	in	the	number	of	filters

				kernel_size=(5,5),

				activation_fn=tf.nn.relu,

				weight_init=tf.random_normal,

				stride=(1,	1),

				trainable=True)

pool_layer_two	=	tf.nn.max_pool(conv2d_layer_two,

				ksize=[1,	2,	2,	1],

				strides=[1,	2,	2,	1],

				padding='SAME')

conv2d_layer_two.get_shape(),	pool_layer_two.get_shape()

The	output	from	executing	the	example	code	is:

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/models/image/mnist/convolutional.py
https://code.google.com/p/cuda-convnet/


	(TensorShape([Dimension(3),	Dimension(63),	Dimension(38),	Dimension(64)]),

				TensorShape([Dimension(3),	Dimension(32),	Dimension(19),	Dimension(64)]))

The	second	layer	changes	little	from	the	first	except	the	depth	of	the	filters.	The	number
of	filters	is	now	doubled	while	again	reducing	the	size	of	the	height	and	width	of	the
image.	The	multiple	convolution	and	pool	layers	are	continuing	to	reduce	the	height	and
width	of	the	input	while	adding	further	depth.

At	this	point,	further	convolution	and	pool	steps	could	be	taken.	In	many	architectures
there	are	over	5	different	convolution	and	pooling	layers.	The	most	advanced	architectures
take	longer	to	train	and	debug	but	they	can	match	more	sophisticated	patterns.	In	this
example,	the	two	convolution	and	pooling	layers	are	enough	to	illustrate	the	mechanics	at
work.

The	tensor	being	operated	on	is	still	fairly	complex	tensor,	the	next	step	is	to	fully
connect	every	point	in	each	image	with	an	output	neuron.	Since	this	example	is	using
softmax	later,	the	fully	connected	layer	needs	to	be	changed	into	a	rank	two	tensor.	The
tensor’s	first	dimension	will	be	used	to	separate	each	image	while	the	second	dimension	is
a	rank	one	tensor	of	each	input	tensor.
flattened_layer_two	=	tf.reshape(

				pool_layer_two,

				[

								batch_size,		#	Each	image	in	the	image_batch

								-1											#	Every	other	dimension	of	the	input

				])

flattened_layer_two.get_shape()

The	output	from	executing	the	example	code	is:
	TensorShape([Dimension(3),	Dimension(38912)])

tf.reshape	has	a	special	value	that	can	be	used	to	signify,	use	all	the	dimensions
remaining.	In	this	example	code,	the	-1	is	used	to	reshape	the	last	pooling	layer	into	a	giant
rank	one	tensor.	With	the	pooling	layer	flattened	out,	it	can	be	combined	with	two	fully
connected	layers	which	associate	the	current	network	state	to	the	breed	of	dog	predicted.
#	The	weight_init	parameter	can	also	accept	a	callable,	a	lambda	is	used	here		returning	a	truncated	normal

#	with	a	stddev	specified.

hidden_layer_three	=	tf.contrib.layers.fully_connected(

				flattened_layer_two,

				512,

				weight_init=lambda	i,	dtype:	tf.truncated_normal([38912,	512],	stddev=0.1),

				activation_fn=tf.nn.relu

)

#	Dropout	some	of	the	neurons,	reducing	their	importance	in	the	model

hidden_layer_three	=	tf.nn.dropout(hidden_layer_three,	0.1)

#	The	output	of	this	are	all	the	connections	between	the	previous	layers	and	the	120	different	dog	breeds

#	available	to	train	on.

final_fully_connected	=	tf.contrib.layers.fully_connected(

				hidden_layer_three,

				120,		#	Number	of	dog	breeds	in	the	ImageNet	Dogs	dataset

				weight_init=lambda	i,	dtype:	tf.truncated_normal([512,	120],	stddev=0.1)

)

This	example	code	creates	the	final	fully	connected	layer	of	the	network	where	every
pixel	is	associated	with	every	breed	of	dog.	Every	step	of	this	network	has	been	reducing
the	size	of	the	input	images	by	converting	them	into	filters	which	are	then	matched	with	a



breed	of	dog	(label).	This	technique	has	reduced	the	processing	power	required	to	train	or
test	a	network	while	generalizing	the	output.



Training
Once	a	model	is	ready	to	be	trained,	the	last	steps	follow	the	same	process	discussed	in

earlier	chapters	of	this	book.	The	model’s	loss	is	computed	based	on	how	accurately	it
guessed	the	correct	labels	in	the	training	data	which	feeds	into	a	training	optimizer	which
updates	the	weights	of	each	layer.	This	process	continues	one	iteration	at	a	time	while
attempting	to	increase	the	accuracy	of	each	step.

An	important	note	related	to	this	model,	during	training	most	classification	functions
(tf.nn.softmax)	require	numerical	labels.	This	was	highlighted	in	the	section	describing
loading	the	images	from	TFRecords.	At	this	point,	each	label	is	a	string	similar	to
n02085620-Chihuahua.	Instead	of	using	tf.nn.softmax	on	this	string,	the	label	needs	to	be
converted	to	be	a	unique	number	for	each	label.	Converting	these	labels	into	an	integer
representation	should	be	done	in	preprocessing.

For	this	dataset,	each	label	will	be	converted	into	an	integer	which	represents	the	index
of	each	name	in	a	list	including	all	the	dog	breeds.	There	are	many	ways	to	accomplish
this	task,	for	this	example	a	new	TensorFlow	utility	operation	will	be	used	(tf.map_fn).
import	glob

#	Find	every	directory	name	in	the	imagenet-dogs	directory	(n02085620-Chihuahua,	...)

labels	=	list(map(lambda	c:	c.split("/")[-1],	glob.glob("./imagenet-dogs/*")))

#	Match	every	label	from	label_batch	and	return	the	index	where	they	exist	in	the	list	of	classes

train_labels	=	tf.map_fn(lambda	l:	tf.where(tf.equal(labels,	l))[0,0:1][0],	label_batch,	dtype=tf.int64

This	example	code	uses	two	different	forms	of	a	map	operation.	The	first	form	of	map	is
used	to	create	a	list	including	only	the	dog	breed	name	based	on	a	list	of	directories.	The
second	form	of	map	is	tf.map_fn	which	is	a	TensorFlow	operation	that	will	map	a	function
over	a	tensor	on	the	graph.	The	tf.map_fn	is	used	to	generate	a	rank	one	tensor	including
only	the	integer	indexes	where	each	label	is	located	in	the	list	of	all	the	class	labels.	These
unique	integers	can	now	be	used	with	tf.nn.softmax	to	classify	output	predictions.



Debug	the	Filters	with	Tensorboard
CNNs	have	multiple	moving	parts	which	can	cause	issues	during	training	resulting	in

poor	accuracy.	Debugging	problems	in	a	CNN	often	start	with	investigating	how	the	filters
(kernels)	are	changing	every	iteration.	Each	weight	used	in	a	filter	is	constantly	changing
as	the	network	attempts	to	learn	the	most	accurate	set	of	weights	to	use	based	on	the	train
method.

In	a	well	designed	CNN,	when	the	first	convolution	layer	is	started,	the	initialized	input
weights	are	set	to	be	random	(in	this	case	using	weight_init=tf.random_normal).	These	weights
activate	over	an	image	and	the	output	of	the	activation	(feature	map)	is	random	as	well.
Visualizing	the	feature	map	as	if	it	were	an	image,	the	output	looks	like	the	original	image
with	static	applied.	The	static	is	caused	by	all	the	weights	activating	at	random.	Over
many	iterations,	each	filter	becomes	more	uniform	as	the	weights	are	adjusted	to	fit	the
training	feedback.	As	the	network	converges,	the	filters	resemble	distinct	small	patterns
which	can	be	found	in	the	image.	Here	is	an	original	grayscale	training	image	before	it	is
passed	through	the	first	convolution	layer:

And,	here	is	a	single	feature	map	from	the	first	convolution	layer	highlighting
randomness	in	the	output:



Debugging	a	CNN	requires	a	familiarity	working	with	these	filters.	Currently	there	isn’t
any	built	in	support	in	tensorboard	to	display	filters	or	feature	maps.	A	simple	view	of	the
filters	can	be	done	using	a	tf.image_summary	operation	on	the	filters	being	trained	and	the
feature	maps	generated.	Adding	an	image	summary	output	to	a	graph	gives	a	good
overview	of	the	filters	being	used	and	the	feature	map	generated	by	applying	them	to	the
input	images.

The	Jupyter	notebook	extension	worth	mentioning	is	TensorDebugger,	which	is	in	an
early	state	of	development.	The	extension	has	a	mode	capable	of	viewing	changes	in
filters	as	an	animated	Gif	over	iterations.

https://github.com/ericjang/tdb


Conclusion

Convolutional	Neural	Networks	are	a	useful	network	architecture	that	are	implemented
with	a	minimal	amount	of	code	in	TensorFlow.	While	they’re	designed	with	images	in
mind,	a	CNN	is	not	limited	to	image	input.	Convolutions	are	used	in	multiple	industries
from	music	to	medical	and	a	CNN	can	be	applied	in	a	similar	manner.	Currently,
TensorFlow	is	designed	for	two	dimensional	convolutions	but	it’s	still	possible	to	work
with	higher	dimensionality	input	using	TensorFlow.

While	a	CNN	could	theoretically	work	with	natural	language	data	(text),	it	isn’t
designed	for	this	type	of	input.	Text	input	is	often	stored	in	a	SparseTensor	where	the
majority	of	the	input	is	0.	CNNs	are	designed	to	work	with	dense	input	where	each	value
is	important	and	the	majority	of	the	input	is	not	0.	Working	with	text	data	is	a	challenge
which	is	addressed	in	the	next	chapter	on	“Recurrent	Neural	Networks	and	Natural
Language	Processing”.





Chapter	6.	Recurrent	Neural	Networks
and	Natural	Language	Processing
In	the	previous	chapter,	we	learned	to	classify	static	images.	This	is	a	huge	application

of	machine	learning,	but	there	is	more.	In	this	chapter,	we	will	take	a	look	at	sequential
models.	Those	models	are	model	powerful	in	a	way,	allowing	us	to	classify	or	label
sequential	inputs,	generate	sequences	of	text	or	translate	one	sequence	into	another.

What	we	learn	here	is	not	distinct	from	static	classification	and	regression.	Recurrent
neural	networks	provide	building	blocks	that	fit	well	into	the	toolkit	of	fully	connected
and	convolutional	layers.	But	let’s	start	with	the	basics.



Introduction	to	Recurrent	Networks

Many	real-world	problems	are	sequential	in	nature.	This	includes	almost	all	problems	in
natural	language	processing	(NLP).	Paragraphs	are	sequences	of	sentences,	sentences	are
sequences	of	words,	and	words	are	sequences	of	characters.	Closely	related,	audio	and
video	clips	are	sequences	of	frames	changing	over	time.	And	even	stock	market	prices
only	make	sense	when	analyzed	over	time	(if	at	all).

In	all	of	these	applications,	the	order	of	observations	matters.	For	example,	the	sentence
“I	had	cleaned	my	car”	can	be	changed	to	“I	had	my	car	cleaned,”	meaning	that	you
arranged	someone	else	to	do	the	work.	This	temporal	dependence	is	even	stronger	in
spoken	language	since	several	words	can	share	a	very	similar	sound.	For	example,	“wreck
a	nice	beach”	sounds	like	“recognize	speech”	and	the	words	can	only	be	reconstructed
from	context.

If	you	think	about	feed-forward	neural	networks	(including	convnets)	from	this
perspective,	they	seem	quite	limited.	Those	networks	process	incoming	data	in	a	single
forward-pass,	like	a	reflex.	These	networks	assume	all	of	their	inputs	being	independent
missing	out	many	patterns	in	the	data.	While	it	is	possible	to	pass	inputs	equal	length	and
feed	the	whole	sequence	into	the	network,	this	does	not	capture	the	nature	of	sequences
very	well.

Recurrent	Neural	Networks	(RNN)	are	a	family	of	networks	that	explicitly	model	time.
RNNs	build	on	the	same	neurons	summing	up	weighted	inputs	from	other	neurons.
However,	neurons	are	allowed	to	connect	both	forward	to	higher	layers	and	backward	to
lower	layers	and	form	cycles.	The	hidden	activations	of	the	network	are	remembered
between	inputs	of	the	same	sequence.

Various	variants	of	RNNs	have	been	around	since	the	1980s	but	were	not	widely	used
until	recently	because	of	insufficient	computation	power	and	difficulties	in	trainng.	Since
the	invention	of	architectures	like	LSTM	in	2006	we	have	seen	very	powerful	applications
of	RNNs.	They	work	well	for	sequential	tasks	in	many	domains,	for	example	speech



recognition,	speeach	synthesis,	connected	handwriting	recognition,	time-series
forecasting,	image	caption	generation,	and	end-to-end	machine	translation.

In	the	following	sections	of	this	chapter,	we	first	take	an	in-depth	look	at	RNNs	and
how	to	optimize	them,	including	the	required	mathematical	background.	We	then
introduce	variations	of	RNNs	that	help	overcome	certain	limitations.	With	those	tools	at
hand,	we	dive	into	four	natural	language	processing	tasks	and	apply	RNNs	to	them.	We
will	walk	through	all	steps	of	the	tasks	including	data	handling,	model	design,
implementation,	and	training	in	TensorFlow.



Approximating	Arbitrary	Programs
Let’s	start	by	introducing	RNNs	and	gaining	some	intuition.	Previously	introduced

feed-forward	networks	operate	on	fixed	size	vectors.	For	example,	they	map	the	pixels	of
28x28	image	to	the	probabilities	of	10	possible	classes.	The	computation	happens	in	a
fixed	number	of	steps,	namely	the	number	of	layers.	In	contrast,	recurrent	networks	can
operate	on	variable	length	sequences	of	vectors,	either	as	input,	output	or	both.

RNNs	are	basically	arbirary	directed	graphs	of	neurons	and	weights.	Input	neurons	have
on	incoming	connections	because	their	activation	is	set	by	the	input	data	anyway.	The
output	neurons	are	just	set	of	neurons	in	the	graph	that	we	read	the	prediction	from.	All
other	neurons	in	the	graph	are	referred	to	as	hidden	neurons.

The	computation	performed	by	an	RNN	is	analogous	to	a	normal	neural	network.	At
each	time	step,	we	show	the	network	the	next	frame	of	the	input	sequence	by	setting	the
input	neurons.	In	contrast	to	forward	networks,	we	cannot	discard	hidden	activations
because	they	serve	as	additional	inputs	at	the	next	time	step.	The	current	hidden
activations	of	an	RNN	are	called	state.	At	the	beginning	of	each	sequence,	we	usually	start
with	an	empty	state,	initialized	to	zeros.

The	state	of	an	RNN	depends	on	the	current	input	and	the	previous	state,	which	in	turn
depends	on	the	input	and	state	before	that.	Therefore,	the	state	has	indirect	access	to	all
previous	inputs	of	the	sequence	and	can	be	interpreted	as	a	working	memory.

Let’s	make	an	analogy	to	computer	programs.	Say	we	want	to	recognize	the	letters	from
an	image	of	handwritten	text.	We	would	try	and	solve	this	with	computer	program	in
Python	using	variables,	loops,	conditionals.	Feel	free	to	try	this,	but	I	think	it	would	be
very	hard	to	get	this	to	work	robustly.

The	good	news	is	that	we	can	train	an	RNN	from	example	data	instead.	As	we	would
store	intermediate	information	in	variables,	the	RNN	learns	to	store	intermediate
information	in	its	state.	Similarly,	the	weight	matrix	of	an	RNN	defines	defines	the
programm	it	executes,	deciding	what	inputs	to	store	in	hidden	activation	and	how	to
combine	activations	to	new	activations	and	outputs.

In	fact,	RNNs	with	sigmoid	activations	were	proven	to	be	Turing-complete	by	Schäfer
and	Zimmermann	in	2006.	Given	the	right	weights,	RNNs	can	thus	compute	any
computable	program.	This	is	a	theoreticaly	property	since	there	is	no	method	to	find	the
perfect	weights	for	a	task.	However,	we	can	already	get	very	good	results	using	gradient
descent,	as	described	in	the	next	section.



Before	we	look	into	optimizing	RNNs,	you	might	ask	why	we	even	need	RNNs	if	we
can	write	Python	programs	instead?	Well,	the	space	of	possible	weight	matrices	is	much
easier	to	explore	automatically	than	the	space	of	possible	C	programs.



Backpropagation	Through	Time
Now	that	we	have	an	idea	of	what	an	RNN	is	and	why	it	is	a	cool	architecture,	let’s	take

a	look	at	how	to	find	a	good	weight	matrix,	or	how	to	optimize	the	weights.	As	with
forward	networks,	the	most	pupular	optimization	method	is	based	on	Gradient	Descent.
However,	it	is	not	straight-forward	how	to	backpropagate	the	error	in	this	dynamic	system.

The	trick	for	optimizing	RNNs	is	that	we	can	unfold	them	in	time	(also	referred	to	as
unrolling)	to	optimize	them	the	same	way	we	optimize	forward	networks.	Let’s	say	we
want	to	operate	on	sequence	of	length	ten.	We	can	then	copy	the	hidden	neurons	ten	times
spanning	their	connections	from	one	copy	to	the	next	one.	By	doing	this,	we	get	rid	of
recurrent	connections	without	changing	the	semantics	of	the	computation.	This	yields	a
forward	network	now,	with	the	corresponding	weights	between	time	steps	being	tied	to	the
same	strengths.	Unfolding	an	RNN	in	time	does	not	change	the	computation,	it	is	just
another	view.

We	can	now	apply	standard	backpropagation	through	this	unfolded	RNN	in	order	to
compute	the	gradient	of	the	error	with	respect	to	the	weights.	This	algorithm	is	called
Back-Propagation	Through	Time	(BPTT).	It	will	return	a	derivative	for	each	weight	in
time,	including	those	that	are	tied	together.	To	keep	tied	weights	at	the	same	value,	we
handle	them	as	tied	weights	are	normally	handeled,	that	is,	summing	up	their	gradients.
Note	that	this	equals	the	way	convolutional	filters	are	handeled	in	convents.



Encoding	and	Decoding	Sequences
The	unfolded	view	of	RNNs	from	the	last	chapter	is	not	only	useful	for	optimization.	It

also	provides	an	intuitive	way	for	visualizing	RNNs	and	their	input	and	output	data.
Before	we	get	to	the	implementation,	we	will	take	a	quick	look	at	what	mappings	RNNs
can	perform.	Sequential	tasks	can	come	in	several	forms:	Sometimes,	the	input	is	a
sequence	and	the	output	is	a	single	vector,	or	the	other	way	around.	RNNs	can	handle
those	and	more	complicated	cases	well.

Sequence	labelling	is	the	case	you	probably	though	of	during	the	ealier	sections.	We
have	sequences	as	input	and	train	the	network	to	produce	the	right	output	for	each	frame.
We	are	basically	mapping	from	one	sequence	to	another	sequence	of	the	same	length.

In	the	sequence	classification	setting,	we	have	sequential	inputs	that	each	have	a	class.
We	can	train	RNNs	in	this	setting	by	only	selecting	the	output	at	the	last	time	frame.
During	optimization,	the	errors	will	flow	back	through	all	time	steps	to	update	the	weights
in	order	to	collect	and	integrate	useful	information	at	each	time	step.

Sequence	generation	is	the	opposite	case	where	we	have	a	single	starting	point,	for
example	a	class	label,	that	we	want	to	generate	sequences	from.	To	generate	sequences,
we	feed	the	output	back	into	the	network	as	next	input.	This	makes	sense	since	the	actual
output	is	often	different	from	the	neural	network	output.	For	example,	the	network	might
output	a	distribution	over	all	classes	but	we	only	choose	the	most	likely	one.

In	both	sequence	classification	and	sequence	generation,	we	can	see	the	single	vector	as
dense	representations	of	information.	In	first	case,	we	encode	the	sequence	into	a	dense
vector	to	predict	a	class.	In	the	second	case,	we	decode	a	dense	vector	back	into	a
sequence.

We	can	combine	these	approaches	for	sequence	translation	where	we	first	encode	a
sequence	of	one	domain,	for	example	English.	We	then	decode	the	last	hidden	activation
back	into	a	sequence	of	another	domain,	for	example	French.	This	works	with	a	single
RNN	but	when	input	and	output	are	conceptually	different,	it	can	make	sense	to	use	two
different	RNNs	and	initialize	the	second	one	with	the	last	activation	of	the	first	one.	When
using	a	single	network,	we	need	to	pass	a	special	token	as	input	after	the	sequence	so	that
the	network	can	learn	when	it	should	stop	encoding	and	start	decoding.



Most	often,	we	will	use	a	network	architecture	called	RNNs	with	output	projections.
This	is	an	RNN	with	fully-connected	hidden	units	and	inputs	and	output	mapping	to	or
from	them,	respectively.	Another	way	to	look	at	this	is	that	we	have	an	RNN	where	all
hidden	units	are	outputs	and	another	feed-forward	layer	stacked	on	top.	You	will	see	that
this	is	how	we	implement	RNNs	in	TensorFlow	because	it	both	is	convenient	and	allows
us	to	specify	different	activation	functions	to	the	hidden	and	output	units.



Implementing	Our	First	Recurrent	Network
Let’s	implement	what	we	have	learned	so	far.	TensorFlow	supports	various	variants	of

RNNs	that	can	be	found	in	the	tf.nn.rnn_cell	module.	With	the	tf.nn.dynamic_rnn()	operation,
TensorFlow	also	implements	the	RNN	dynamics	for	us.

There	is	also	a	version	of	this	function	that	adds	the	unfolded	operations	to	the	graph
instead	of	using	a	loop.	However,	this	consumes	considerably	more	memory	and	has	no
real	benefits.	We	therefore	use	the	newer	dynamic_rnn()	operation.

As	parameters,	dynamic_rnn()	takes	a	recurrent	network	definition	and	the	batch	of	input
sequences.	For	now,	the	sequences	all	have	the	same	length.	The	function	creates	the
required	computations	for	the	RNN	to	the	compute	graph	and	returns	two	tensors	holding
the	outputs	and	hidden	states	at	each	time	step.
import	tensorflow	as	tf

#	The	input	data	has	dimensions	batch_size	*	sequence_length	*	frame_size.

#	To	not	restrict	ourselves	to	a	fixed	batch	size,	we	use	None	as	size	of

#	the	first	dimension.

sequence_length	=	...

frame_size	=	...

data	=	tf.placeholder(tf.float32,	[None,	sequence_length,	frame_size])

num_neurons	=	200

network	=	tf.nn.rnn_cell.BasicRNNCell(num_neurons)

#	Define	the	operations	to	simulate	the	RNN	for	sequence_length	steps.

outputs,	states	=	tf.nn.dynamic_rnn(network,	data,	dtype=tf.float32)

Now	that	we	have	defined	the	RNN	and	unfolded	it	in	time,	we	can	just	load	some	data
and	train	the	network	using	one	of	TensorFlow’s	optimizers,	for	example
tf.train.RMSPropOptimizer	or	tf.train.AdamOptimizer.	We	will	see	examples	of	this	in	the	later
sections	of	this	chapter	where	we	approach	practical	problems	with	the	help	of	RNNs.



Vanishing	and	Exploding	Gradients
In	the	last	section,	we	defined	RNNs	and	unfolded	them	in	time	in	order	to

backpropagate	errors	and	apply	gradient	descent.	However,	this	model	would	not	perform
very	well	as	it	stands,	especially	it	fails	to	capture	long-term	dependencies	between	input
frames	as	needed	for	NLP	tasks	for	example.

Below	is	an	example	task	involving	a	long-term	dependency	where	an	RNN	should
classify	whether	the	input	sequence	is	part	of	the	given	grammar	or	not.	In	order	to
perform	this	task,	the	network	has	to	remember	the	very	first	frame	of	the	sequence	with
many	unrelated	frames	following.	Why	is	this	a	problem	for	the	conventional	RNNs	we
have	seen	so	far?

The	reason	why	it	is	difficult	for	an	RNN	to	learn	such	long-term	dependencies	lies	in
how	errors	are	propagated	trough	the	network	during	optimization.	Remember	that	we
propagate	the	errors	through	the	unfolded	RNN	in	order	to	compute	the	gradients.	For
long	sequences,	the	unfolded	network	gets	very	deep	and	has	many	layers.	At	each	layer,
backpropagation	scales	the	error	from	above	in	the	network	by	the	local	derivatives.

If	most	of	local	derivatives	are	much	smaller	than	the	value	of	one,	the	gradient	gets
scaled	down	at	every	layer	causing	it	to	shrink	exponentially	and	eventually,	vanish.
Analogously,	many	local	derivatives	being	greater	than	one	cause	the	gradient	to	explode.

Let’s	compute	the	gradient	of	this	example	network	with	just	one	hidden	neuron	per
layer	in	order	to	get	a	better	understanding	of	this	problem.	For	each	layer	 	the	local

derivatives	 	get	multiplied	together:



Resolving	the	derivatives	yields:

As	you	can	see,	the	error	term	contains	the	transposed	weight	matrix	several	times	as	a
multiplicative	term.	In	our	toy	network,	the	weight	matrix	contains	just	one	element	and
it’s	easy	to	see	that	the	terms	gets	close	to	zero	or	infinity	when	most	weights	are	smaller
or	larger	than	one.	In	a	larger	network	with	real	weight	matrices,	the	same	problem	occurs
when	the	eigen	values	of	thei	weight	matrices	are	smaller	or	larger	than	one.

This	problem	actually	exists	in	any	deep	networks,	not	just	recurrent	ones.	However,	in
RNNs	the	connections	between	time	steps	are	tied	each.	Therefore,	local	derivatives	of
such	weights	are	either	all	lesser	or	all	greater	than	one	and	the	gradient	is	alawys	scaled
in	the	same	direction	for	each	weight	in	the	original	(not	unfolded)	RNN.	Therefore,	the
problem	of	vanishing	and	exploding	gradients	is	more	prominent	in	RNNs	than	in	forward
networks.

There	are	a	couple	of	problems	with	very	small	or	very	large	gradients.	With	elements
of	the	gradient	close	to	zero	or	infinity,	learning	stagnates	or	diverges,	respectively.
Moreover,	we	are	optimizing	numerically	and	floating	point	precision	comes	into	play
distorting	the	gradient.	This	problem,	also	known	as	the	fundamental	problem	of	deep
learning	has	been	studied	and	approached	by	many	researchers	in	the	last	years.	The	most
popular	solution	is	an	RNN	architecture	called	Long-Short	Term	Memory	(LSTM)	that	we
will	look	at	in	the	next	section.



Long-Short	Term	Memory
Proposed	in	1997	by	Hochreiter	&	Schmidhuber,	LSTM	is	a	special	form	of	RNN	that

is	designed	to	overcome	the	vanishing	and	exploding	gradient	problem.	It	works
significantly	better	for	learning	long-term	dependencies	and	has	become	a	defacto-
standard	for	RNNs.	Since	then	several	variations	of	LSTM	have	been	proposed	that	are
also	implemented	in	TensorFlow	and	that	we	will	highlight	later	in	this	section.

To	cope	with	the	problem	of	vanishing	and	exploding	gradients,	the	LSTM	architecture
replaces	the	normal	neurons	in	an	RNN	with	so-called	LSTM	cells	that	have	a	little
memory	inside.	Those	cells	are	wired	together	as	they	are	in	a	usual	RNN	but	they	have	an
internal	state	that	helps	to	remember	errors	over	many	time	steps.

The	trick	of	LSTM	is	that	this	internal	state	has	a	self-connection	with	a	fixed	weight	of
one	and	a	linear	activation	function,	so	that	its	local	derivative	is	always	one.	During
backpropagation,	this	so	called	constant	error	carousel	can	carry	errors	over	many	time
steps	without	having	the	gradient	vanish	or	explode.

While	the	purpose	of	the	internal	state	is	to	deliver	errors	over	many	time	steps,	the
LSTM	architecture	leaves	learning	to	the	sourrounding	gates	that	have	non-linear,	usually
sigmoid,	activation	functions.	In	the	original	LSTM	cell,	there	are	two	gates:	One	learns	to
scale	the	incoming	activation	and	one	learns	to	scale	the	outgoing	activation.	The	cell	can
thus	learn	when	to	incorporate	or	ignore	new	inputs	and	when	to	release	the	feature	it
represents	to	other	cells.	The	input	to	a	cell	is	feeded	into	all	gates	using	individual
weights.

We	also	refer	to	recurrent	networks	as	layers	because	we	we	can	use	them	as	part	of
larger	architectures.	For	example,	we	could	first	feed	the	time	steps	through	several
convolution	and	pooling	layers,	then	process	these	outputs	with	an	LSTM	layer	and	add	a
softmax	layer	ontop	of	the	LSTM	activation	at	the	last	time	step.

TensorFlow	provides	such	an	LSTM	network	with	the	LSTMCell	class	that	can	be	used	as
a	drop-in	replacement	for	BasicRNNCell	but	also	provides	some	additional	switches.	Despite
its	name,	this	class	represents	a	whole	LSTM	layer.	In	the	later	sections	we	will	see	how	to
connect	LSTM	layers	to	other	networks	in	order	to	form	larger	architectures.





Architecture	Variations
A	popular	extension	to	LSTM	is	to	add	a	forget	gate	scaling	the	internal	recurrent

connection,	allowing	the	network	to	learn	to	forget	(Gers,	Felix	A.,	Jürgen	Schmidhuber,
and	Fred	Cummins.	“Learning	to	forget:	Continual	prediction	with	LSTM.”	Neural
computation	12.10	(2000):	2451-2471.).	The	derivative	of	the	internal	recurrent
connection	is	now	the	activation	of	the	forget	gate	and	can	differ	from	the	value	of	one.
The	network	can	still	learn	to	leave	the	forget	gate	closed	as	long	as	remembering	the	cell
context	is	important.

It	is	important	to	initialize	the	forget	gate	to	a	value	of	one	so	that	the	cell	starts	in	a
remembering	state.	Forget	gates	are	the	default	is	almost	all	implementations	nowadays.	In
TensorFlow,	we	can	initialize	the	bias	values	of	the	forget	gates	by	specifying	the
forget_bias	parameter	to	the	LSTM	layer.	The	default	is	the	value	one	and	usually	its	best	to
leave	it	that	way.



Another	extension	are	so	called	peephole	connections,	which	allows	the	gates	to	look	at
the	cell	state	(Gers,	Felix	A.,	Nicol	N.	Schraudolph,	and	Jürgen	Schmidhuber.	“Learning
precise	timing	with	LSTM	recurrent	networks.”	The	Journal	of	Machine	Learning
Research	3	(2003):	115-143.).	The	authors	claim	that	peephole	connections	are	benefitial
when	the	task	involves	precise	timing	and	intervals.	TensorFlow’s	LSTM	layer	supports
peephole	connections.	They	can	be	activated	by	passing	the	use_peepholes=True	flag	to	the
LSTM	layer.

Based	on	the	idea	of	LSTM,	an	alternative	memory	cell	called	Gated	Recurrent	Unit
(GRU)	has	been	proposed	in	2014	(Chung,	Junyoung,	et	al.	“Empirical	evaluation	of
gated	recurrent	neural	networks	on	sequence	modeling.”	arXiv	preprint	arXiv:1412.3555
(2014).).	In	contrast	to	LSTM,	GRU	has	a	simpler	architecture	and	requires	less
computation	while	yielding	very	similar	results.	GRU	has	no	output	gate	and	combines	the
input	and	forget	gates	into	a	single	update	gate.

This	update	gate	determines	how	much	the	internal	state	is	blended	with	a	candidate
activation.	The	candidate	activation	is	computed	from	a	fraction	of	the	hidden	state
determined	by	the	so-called	reset	gate	and	the	new	input.	The	TensorFlow	GRU	layer	is
called	GRUCell	and	have	no	parameters	other	than	the	number	of	cells	in	the	layer.	For
further	reading,	we	suggest	the	2015	paper	by	Jozefowicz	et	al.	who	empirically	explored
recurrent	cell	architectures	(Jozefowicz,	Rafal,	Wojciech	Zaremba,	and	Ilya	Sutskever.	“An
empirical	exploration	of	recurrent	network	architectures.”	Proceedings	of	the	32nd
International	Conference	on	Machine	Learning	(ICML-15).	2015.).



So	far	we	looked	at	RNNs	with	fully	connected	hidden	units.	This	is	the	most	general
architecture	since	the	network	can	learn	to	set	unneeded	weights	to	zero	during	trainng.
However,	it	is	common	to	stack	two	or	more	layers	of	fully-connected	RNNs	on	top	of
each	other.	This	can	still	be	seen	as	one	RNN	that	has	some	structure	in	its	connections.
Since	nformation	can	only	flow	upward	between	layers,	multi-layer	RNNs	have	less
weights	than	a	huge	fully	connected	RNN	and	tend	to	learn	more	abstract	features.



Word	Vector	Embeddings

In	this	section	we	will	implement	a	model	to	learn	word	embeddings,	a	very	powerful
way	to	represent	words	for	NLP	tasks.	The	topic	of	word	vector	embeddings	has	recently
gained	popularity	since	methods	became	efficient	enough	to	run	on	large	text	corpora.	We
do	not	use	an	RNN	for	this	task	yet	but	we	will	rely	on	this	section	in	all	further	tasks.	If
you	are	familiar	with	the	concept	of	word	vectors	and	tools	like	word2vec	but	are	not
interested	in	implementing	it	yourself,	feel	free	to	skip	ahead	to	the	next	section.

Why	to	represent	words	as	vectors?	The	most	straight-forward	way	to	feed	words	into	a
learning	system	is	one-hot	encoded,	that	is,	as	a	vector	of	the	vocabulary	size	with	all
elements	zero	except	for	the	position	of	that	word	set	to	one.	There	are	two	problems	with
this	approach:	First,	the	vectors	are	very	long	for	real	applications	since	there	are	many
different	words	in	a	natural	language.	Second,	this	one-hot	representation	does	not	provide
any	semantic	relatedness	between	words	that	certainly	exists.

As	a	solution	to	the	semantic	relatedness,	the	idea	of	representing	words	by	their
cooccurrences	has	been	around	for	a	long	time.	Basically,	we	run	over	a	large	corpus	of
text	and	for	each	word	count	the	surrounding	words	within	a	distance	of,	say,	five.	Each
word	is	then	represented	by	the	normalized	counts	of	nearby	words.	The	idea	behind	this
is	that	words	that	are	used	in	similar	contexts	are	similar	in	a	semantic	way.	We	could	then
compress	the	occurance	vectors	to	fewer	dimensions	by	applying	PCA	or	similar	a	similar
method	to	get	denser	representations.	While	this	approach	leads	to	quite	good
performance,	it	requires	us	to	keep	track	of	the	whole	cooccurrence	that	is	a	square	matrix
of	the	size	of	our	vocabulary.



In	2013,	Mikolov	et	al.	came	up	with	a	practical	and	efficient	way	to	compute	word
representations	from	context.	The	paper	is:	Mikolov,	Tomas,	et	al.	“Efficient	estimation	of
word	representations	in	vector	space.”	arXiv	preprint	arXiv:1301.3781	(2013).	Their	skip-
gram	model	starts	with	random	representations	and	has	a	simple	classifier	that	tries	to
predict	a	context	word	from	the	current	word.	The	errors	are	propagated	through	both	the
classifier	weights	and	the	word	representations	and	we	adjust	both	to	reduce	the	prediction
error.	It	has	been	found	that	training	this	model	over	a	large	corpus	makes	the
representation	vectors	approximate	compressed	co-occurance	vectors.	We	will	now
implement	the	skip-gram	model	in	TensorFlow.



Preparing	the	Wikipedia	Corpus
Before	going	into	details	of	the	skip-gram	model,	we	prepare	our	dataset,	an	English

Wikipedia	dump	in	this	case.	The	default	dumps	contain	the	full	revision	history	of	all
pages	but	we	already	have	enough	data	with	the	about	100GB	of	text	from	current	page
versions.	This	exercise	also	works	for	other	languages	and	you	can	access	an	overview	of
the	available	dumps	at	the	Wikimedia	Downloads	website:
https://dumps.wikimedia.org/backup-index.html.
import	bz2

import	collections

import	os

import	re

class	Wikipedia:

				def	__init__(self,	url,	cache_dir,	vocabulary_size=10000):

								pass

				def	__iter__(self):

								"""Iterate	over	pages	represented	as	lists	of	word	indices."""

								pass

				@property

				def	vocabulary_size(self):

								pass

				def	encode(self,	word):

								"""Get	the	vocabulary	index	of	a	string	word."""

								pass

				def	decode(self,	index):

								"""Get	back	the	string	word	from	a	vocabulary	index."""

								pass

				def	_read_pages(self,	url):

								"""

								Extract	plain	words	from	a	Wikipedia	dump	and	store	them	to	the	pages

								file.	Each	page	will	be	a	line	with	words	separated	by	spaces.

								"""

								pass

				def	_build_vocabulary(self,	vocabulary_size):

								"""

								Count	words	in	the	pages	file	and	write	a	list	of	the	most	frequent

								words	to	the	vocabulary	file.

								"""

								pass

				@classmethod

				def	_tokenize(cls,	page):

								pass

There	are	a	couple	of	steps	to	perform	in	order	to	get	the	data	into	the	right	format.	As
you	might	have	seen	earler	in	this	book,	data	collection	and	cleaning	is	both	a	demanding
and	important	task.	Ultimately,	we	would	like	to	iterate	over	Wikipedia	pages	represented
as	one-hot	encoded	words.	We	do	this	is	in	multiple	steps:

1.	 Download	the	dump	and	extract	pages	and	their	words.
2.	 Count	words	to	form	a	vocabulary	of	the	most	common	words.
3.	 Encode	the	extracted	pages	using	the	vocabulary.

The	whole	corpus	does	not	fit	into	main	memory	easily,	so	we	have	to	perform	these

https://dumps.wikimedia.org/backup-index.html


operations	on	data	streams	by	reading	the	file	line	by	line	and	write	the	intermediate
results	back	to	disk.	This	way,	we	have	checkpoints	between	the	steps	so	that	we	don’t
have	to	start	all	over	if	something	crashes.	We	use	the	following	class	to	handle	the
Wikipedia	processing.	In	the	__init__()	you	can	see	the	checkpointing	logic	using	file-
existance	checks.
def	__init__(self,	url,	cache_dir,	vocabulary_size=10000):

				self._cache_dir	=	os.path.expanduser(cache_dir)

				self._pages_path	=	os.path.join(self._cache_dir,	'pages.bz2')

				self._vocabulary_path	=	os.path.join(self._cache_dir,	'vocabulary.bz2')

				if	not	os.path.isfile(self._pages_path):

								print('Read	pages')

								self._read_pages(url)

				if	not	os.path.isfile(self._vocabulary_path):

								print('Build	vocabulary')

								self._build_vocabulary(vocabulary_size)

				with	bz2.open(self._vocabulary_path,	'rt')	as	vocabulary:

								print('Read	vocabulary')

								self._vocabulary	=	[x.strip()	for	x	in	vocabulary]

				self._indices	=	{x:	i	for	i,	x	in	enumerate(self._vocabulary)}

def	__iter__(self):

				"""Iterate	over	pages	represented	as	lists	of	word	indices."""

				with	bz2.open(self._pages_path,	'rt')	as	pages:

								for	page	in	pages:

												words	=	page.strip().split()

												words	=	[self.encode(x)	for	x	in	words]

												yield	words

@property

def	vocabulary_size(self):

				return	len(self._vocabulary)

def	encode(self,	word):

				"""Get	the	vocabulary	index	of	a	string	word."""

				return	self._indices.get(word,	0)

def	decode(self,	index):

				"""Get	back	the	string	word	from	a	vocabulary	index."""

				return	self._vocabulary[index]

As	you	have	noticed,	we	still	have	to	implement	two	important	functions	of	this	Wclass.
The	first	one,	_read_pages()	will	download	the	Wikipedia	dump	which	comes	as	a
compressed	XML	file,	iterate	over	the	pages	and	extract	the	plain	words	to	get	rid	of	any
formatting.	To	read	the	compressed	file,	we	need	the	bz2	module	that	provides	an	open()
function	that	works	similar	to	its	standard	equivalent	but	takes	care	of	compression	and
decompression,	even	when	streaming	the	file.	To	save	some	disk	space,	we	will	also	use
this	compression	for	the	intermediate	results.	The	regex	used	to	extract	words	just	captures
any	sequence	of	consecutive	letter	and	individual	occurences	of	some	special	characters.
from	lxml	import	etree

TOKEN_REGEX	=	re.compile(r'[A-Za-z]+|[!?.:,()]')

def	_read_pages(self,	url):

				"""

				Extract	plain	words	from	a	Wikipedia	dump	and	store	them	to	the	pages

				file.	Each	page	will	be	a	line	with	words	separated	by	spaces.

				"""

				wikipedia_path	=	download(url,	self._cache_dir)

				with	bz2.open(wikipedia_path)	as	wikipedia,	\

												bz2.open(self._pages_path,	'wt')	as	pages:

								for	_,	element	in	etree.iterparse(wikipedia,	tag='{*}page'):

												if	element.find('./{*}redirect')	is	not	None:

																continue

												page	=	element.findtext('./{*}revision/{*}text')

												words	=	self._tokenize(page)



												pages.write('	'.join(words)	+	'\n')

												element.clear()

@classmethod

def	_tokenize(cls,	page):

				words	=	cls.TOKEN_REGEX.findall(page)

				words	=	[x.lower()	for	x	in	words]

				return	words

We	need	a	vocabulary	of	words	to	use	for	the	one-hot	encoding.	We	can	then	encode
each	word	by	its	intex	in	the	vocabulary.	To	remove	some	misspelled	or	very	unkommon
words,	the	vocabulary	only	contains	the	the	vocabulary_size	-	1	most	common	words	and	an
<unk>	token	that	will	be	used	for	every	word	that	is	not	in	the	vocabulary.	This	token	will
also	give	us	a	word-vector	that	we	can	use	for	unseen	words	later.
def	_build_vocabulary(self,	vocabulary_size):

				"""

				Count	words	in	the	pages	file	and	write	a	list	of	the	most	frequent

				words	to	the	vocabulary	file.

				"""

				counter	=	collections.Counter()

				with	bz2.open(self._pages_path,	'rt')	as	pages:

								for	page	in	pages:

												words	=	page.strip().split()

												counter.update(words)

				common	=	['<unk>']	+	counter.most_common(vocabulary_size	-	1)

				common	=	[x[0]	for	x	in	common]

				with	bz2.open(self._vocabulary_path,	'wt')	as	vocabulary:

								for	word	in	common:

												vocabulary.write(word	+	'\n')

Since	we	extracted	the	plain	text	and	defined	the	encoding	for	the	words,	we	can	form
training	examples	of	it	one	the	fly.	This	is	nice	since	storing	the	examples	would	require	a
lot	of	storage	space.	Most	of	the	time	will	be	spent	for	the	training	anyway,	so	this	doesn’t
impact	performance	by	much.	We	also	want	to	group	the	resulting	examples	into	batches
to	train	them	more	efficiently.	We	will	be	able	to	use	very	large	batches	with	this	model
because	the	classifier	does	not	require	a	lot	of	memory.

So	how	do	we	form	the	training	examples?	Remember	that	the	skip-gram	model
predicts	context	words	from	current	words.	While	iterating	over	the	text,	we	create
training	examples	with	the	current	word	as	data	and	its	surrounding	words	as	targets.	For	a
context	size	of	 ,	we	would	thus	generate	ten	training	examples	per	word,	with	the
five	words	to	the	left	and	right	being	the	targets.	However,	one	can	argue	that	close
neighbors	are	more	important	to	the	semantic	context	than	far	neighbors.	We	thus	create
less	training	examples	with	far	context	words	by	randomly	choosing	a	context	size	in
range	 	at	each	word.
def	skipgrams(pages,	max_context):

				"""Form	training	pairs	according	to	the	skip-gram	model."""

				for	words	in	pages:

								for	index,	current	in	enumerate(words):

												context	=	random.randint(1,	max_context)

												for	target	in	words[max(0,	index	-	context):	index]:

																yield	current,	target

												for	target	in	words[index	+	1:	index	+	context	+	1]:

																yield	current,	target

def	batched(iterator,	batch_size):

				"""Group	a	numerical	stream	into	batches	and	yield	them	as	Numpy	arrays."""

				while	True:

								data	=	np.zeros(batch_size)



								target	=	np.zeros(batch_size)

								for	index	in	range(batch_size):

												data[index],	target[index]	=	next(iterator)

								yield	data,	target



Model	structure
Now	that	we	got	the	Wikipedia	corpus	prepared,	we	can	define	a	model	to	compute	the

word	embeddings.
class	EmbeddingModel:

				def	__init__(self,	data,	target,	params):

								self.data	=	data

								self.target	=	target

								self.params	=	params

								self.embeddings

								self.cost

								self.optimize

				@lazy_property

				def	embeddings(self):

								pass

				@lazy_property

				def	optimize(self):

								pass

				@lazy_property

				def	cost(self):

								pass

Each	word	starts	off	being	represented	by	a	random	vector.	From	the	intermediate
representation	of	a	word,	a	classifier	will	then	try	to	predict	the	current	representation	of
one	of	its	context	words.	We	will	then	propagate	the	errors	to	tweak	both	the	weights	and
the	representation	of	the	input	word.	The	thus	use	a	tf.Variable	for	the	representations.
@lazy_property

def	embeddings(self):

				initial	=	tf.random_uniform(

								[self.params.vocabulary_size,	self.params.embedding_size],

								-1.0,	1.0)

				return	tf.Variable(initial)

We	use	the	MomentumOptimizer	that	is	not	very	clever	but	has	the	advantage	of	being	very
fast.	This	makes	it	play	nicely	with	our	large	Wikipedia	corpus	and	the	idea	behind	skip-
gram	to	prefer	more	data	over	clever	algorithms.
@lazy_property

def	optimize(self):

				optimizer	=	tf.train.MomentumOptimizer(

								self.params.learning_rate,	self.params.momentum)

				return	optimizer.minimize(self.cost)

The	only	missing	part	of	our	model	is	the	classifier.	This	is	the	heart	of	the	successful
skip-gram	model	and	we	will	now	take	a	look	at	how	it	works.



Noise	Contrastive	Classifier
There	are	multiple	cost	functions	for	the	skip-gram	model	but	one	that	has	been	found

to	work	very	well	is	noise-constrastive	estimation	loss.	Ideally,	we	not	only	want	the
predictions	to	be	close	to	the	targets	but	also	far	from	words	that	are	not	targets	for	the
current	word.	This	could	be	nicely	modelled	as	a	softmax	classifier	but	we	do	not	want	to
compute	and	train	the	outputs	for	all	words	in	the	alphabet	every	time.	The	idea	is	to
always	use	some	new	random	vectors	as	negative	examples,	also	called	contrastive
examples.	Over	enough	training	iterations	this	averages	to	the	softmax	classifier	while
only	requiring	tens	of	classes.	TensorFlow	provides	a	convenient	tf.nn.nce_loss	function	for
this.
@lazy_property

def	cost(self):

				embedded	=	tf.nn.embedding_lookup(self.embeddings,	self.data)

				weight	=	tf.Variable(tf.truncated_normal(

								[self.params.vocabulary_size,	self.params.embedding_size],

								stddev=1.0	/	self.params.embedding_size	**	0.5))

				bias	=	tf.Variable(tf.zeros([self.params.vocabulary_size]))

				target	=	tf.expand_dims(self.target,	1)

				return	tf.reduce_mean(tf.nn.nce_loss(

								weight,	bias,	embedded,	target,

								self.params.contrastive_examples,

								self.params.vocabulary_size))



Training	the	model
We	prepared	the	corpus	and	defined	the	model.	Here	is	the	remaining	code	to	put	things

together.	After	training,	we	store	the	final	embeddings	into	another	file.	The	example
below	uses	only	a	subset	of	Wikipedia	that	already	takes	about	5	hours	to	train	on	an
average	CPU.	To	use	the	full	corpus,	just	switch	the	url	to
https://dumps.wikimedia.org/enwiki/20160501/enwiki-20160501-pages-meta-
current.xml.bz2.

As	you	can	see,	we	make	use	of	a	AttrDict	class.	This	is	equivalent	to	a	Python	dict
except	that	we	can	access	keys	as	if	they	were	attributes,	for	example	params.batch_size.	For
more	details,	please	see	the	chapter	Code	Structure	and	Utilities.
params	=	AttrDict(

				vocabulary_size=10000,

				max_context=10,

				embedding_size=200,

				contrastive_examples=100,

				learning_rate=0.5,

				momentum=0.5,

				batch_size=1000,

)

data	=	tf.placeholder(tf.int32,	[None])

target	=	tf.placeholder(tf.int32,	[None])

model	=	EmbeddingModel(data,	target,	params)

corpus	=	Wikipedia(

				'https://dumps.wikimedia.org/enwiki/20160501/'	\

				'enwiki-20160501-pages-meta-current1.xml-p000000010p000030303.bz2',

				'/home/user/wikipedia',

				params.vocabulary_size)

examples	=	skipgrams(corpus,	params.max_context)

batches	=	batched(examples,	params.batch_size)

sess	=	tf.Session()

sess.run(tf.initialize_all_variables())

average	=	collections.deque(maxlen=100)

for	index,	batch	in	enumerate(batches):

				feed_dict	=	{data:	batch[0],	target:	batch[1]}

				cost,	_	=	sess.run([model.cost,	model.optimize],	feed_dict)

				average.append(cost)

				print('{}:	{:5.1f}'.format(index	+	1,	sum(average)	/	len(average)))

embeddings	=	sess.run(model.embeddings)

np.save('/home/user/wikipedia/embeddings.npy',	embeddings)

After	about	five	hours	of	training,	this	we	will	get	the	learned	embeddings	as	a	stored
Numpy	array.	While	we	will	use	the	embeddings	in	the	later	chapter,	you	don’t	have	to
compute	them	yourself,	if	you	don’t	want	to.	There	are	pre-trained	word	embeddings
available	online	and	we	will	point	to	them	later	when	we	need	them.

https://dumps.wikimedia.org/enwiki/20160501/enwiki-20160501-pages-meta-current.xml.bz2


Sequence	Classification

Sequence	classification	is	a	problem	setting	where	we	predict	a	class	for	the	whole
input	sequence.	Such	problems	are	common	in	many	fields	including	genomics	and
finance.	A	prominent	from	NLP	is	sentiment	analysis:	Predicting	the	attitude	towards	a
given	topic	from	user-written	text.	For	example,	one	could	predict	the	sentiment	of	tweets
mentioning	a	certain	candidate	in	an	election	and	use	that	to	forecast	the	election	results.
Another	example	is	predicting	product	or	movie	ratings	from	written	reviews.	This	is	used
as	a	benchmark	task	in	the	NLP	community	because	reviews	often	contain	numerical
ratings	that	make	for	convenient	target	values.

We	will	use	a	dataset	of	movie	reviews	from	the	International	Movie	Database	with	the
binary	targets	positive	or	negative.	On	this	dataset,	navive	methods	that	just	look	at	the
existance	of	words	tend	to	fail	because	of	negations,	irony	and	ambiguity	in	language	in
general.	We	will	build	a	recurrent	model	operating	on	the	word	vectors	from	the	last
section.	The	recurrent	network	will	see	a	review	word-by-word.	From	the	activation	at	the
last	word,	we	will	train	a	classifier	to	predict	the	sentiment	of	the	whole	review.	Because
we	train	the	architecture	end-to-end,	the	RNN	will	to	collect	and	encode	the	useful
information	from	the	words	that	will	be	most	valuable	for	the	later	classification.



Imdb	Movie	Review	Dataset
The	movie	review	dataset	is	offered	by	Stanford	University’s	AI	department:

http://ai.stanford.edu/~amaas/data/sentiment/.	It	comes	as	a	compressed	tar	archive	where
positive	and	negative	reviews	can	be	found	as	text	files	in	two	according	folders.	We	apply
the	same	pre-processing	to	the	text	as	in	the	last	section:	Extracting	plain	words	using	a
regular	expression	and	converting	to	lower	case.
import	tarfile

import	re

class	ImdbMovieReviews:

				DEFAULT_URL	=	\

								'http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz'

				TOKEN_REGEX	=	re.compile(r'[A-Za-z]+|[!?.:,()]')

				def	__init__(self,	cache_dir,	url=None):

								self._cache_dir	=	cache_dir

								self._url	=	url	or	type(self).DEFAULT_URL

				def	__iter__(self):

								filepath	=	download(self._url,	self._cache_dir)

								with	tarfile.open(filepath)	as	archive:

												for	filename	in	archive.getnames():

																if	filename.startswith('aclImdb/train/pos/'):

																				yield	self._read(archive,	filename),	True

																elif	filename.startswith('aclImdb/train/neg/'):

																				yield	self._read(archive,	filename),	False

				def	_read(self,	archive,	filename):

								with	archive.extractfile(filename)	as	file_:

												data	=	file_.read().decode('utf-8')

												data	=	type(self).TOKEN_REGEX.findall(data)

												data	=	[x.lower()	for	x	in	data]

												return	data

http://ai.stanford.edu/~amaas/data/sentiment/


Using	the	Word	Embeddings
As	explained	in	the	Word	Vector	Embeddings	section,	embeddings	are	semantically

richer	that	one-hot	encoded	words.	We	can	help	our	RNN	by	letting	it	operate	on	the
embedded	words	of	movie	reviews	rather	than	one-hot	encoded	words.	For	this,	we	will
use	the	vocabulary	and	embeddings	that	we	computed	computed	in	the	referenced	section.
The	code	should	be	straight	forward.	We	just	use	the	vocabulary	to	determine	the	index	of
a	word	and	use	that	index	to	find	the	right	embedding	vector.	The	following	class	also
padds	the	sequences	to	the	same	length	so	we	can	easily	fit	batches	of	multiple	reviews
into	your	network	later.
import	bz2

import	numpy	as	np

class	Embedding:

				def	__init__(self,	vocabulary_path,	embedding_path,	length):

								self._embedding	=	np.load(embedding_path)

								with	bz2.open(vocabulary_path,	'rt')	as	file_:

												self._vocabulary	=	{k.strip():	i	for	i,	k	in	enumerate(file_)}

								self._length	=	length

				def	__call__(self,	sequence):

								data	=	np.zeros((self._length,	self._embedding.shape[1]))

								indices	=	[self._vocabulary.get(x,	0)	for	x	in	sequence]

								embedded	=	self._embedding[indices]

								data[:len(sequence)]	=	embedded

								return	data

				@property

				def	dimensions(self):

								return	self._embedding.shape[1]



Sequence	Labelling	Model
We	want	to	classify	the	sentiment	of	text	sequences.	Because	this	is	a	supervised

setting,	we	pass	two	placeholders	to	the	model:	one	for	the	input	data,	or	the	sequence,	and
one	for	the	target	value,	or	the	sentiment.	We	also	pass	in	the	params	object	that	contains
configuration	parameters	like	the	size	of	the	recurrent	layer,	its	cell	architecture	(LSTM,
GRU,	etc),	and	the	optimizer	to	use.	We	will	now	implement	the	properties	and	discuss
them	in	detail.
class	SequenceClassificationModel:

				def	__init__(self,	data,	target,	params):

								self.data	=	data

								self.target	=	target

								self.params	=	params

								self.prediction

								self.cost

								self.error

								self.optimize

				@lazy_property

				def	length(self):

								pass

				@lazy_property

				def	prediction(self):

								pass

				@lazy_property

				def	cost(self):

								pass

				@lazy_property

				def	error(self):

								pass

				@lazy_property

				def	optimize(self):

								pass

				@staticmethod

				def	_last_relevant(output,	length):

								pass

First,	we	obtain	the	lengths	of	sequences	in	the	current	data	batch.	We	need	this	since
the	data	comes	as	a	single	tensor,	padded	with	zero	vectors	to	the	longest	review	length.
Instead	of	keeping	track	of	the	sequence	lengths	of	every	review,	we	just	compute	it
dynamically	in	TensorFlow.	To	get	the	length	per	sequence,	we	collapse	the	word	vectors
using	the	maximum	on	the	absolute	values.	The	resulting	scalars	will	be	zero	for	zero
vectors	and	larger	than	zero	for	any	real	word	vector.	We	then	discretize	these	values	to
zero	or	one	using	tf.sign()	and	sum	up	the	results	along	the	time	steps	to	obtain	the	length
of	each	sequence.	The	resulting	tensor	has	the	length	of	batch	size	and	contains	a	scalar
length	for	each	sequence.
@lazy_property

def	length(self):

				used	=	tf.sign(tf.reduce_max(tf.abs(self.data),	reduction_indices=2))

				length	=	tf.reduce_sum(used,	reduction_indices=1)

				length	=	tf.cast(length,	tf.int32)

				return	length



Softmax	from	last	relevant	activation
For	the	prediction,	we	define	an	RNN	as	usual.	However,	this	time	we	want	to	augment

it	by	stacking	a	softmax	layer	ontop	of	its	last	activation.	For	the	RNN,	we	use	a	cell	type
and	cell	count	defined	in	the	params	object.	We	use	the	already	defined	length	property	to
only	show	rows	of	the	batch	to	the	RNN	up	to	their	length.	We	can	then	fetch	the	last
output	activation	of	each	sequence	and	feed	that	into	a	softmax	layer.	Defining	the
softmax	layer	should	be	pretty	straight	forward	if	you’ve	followed	the	book	up	to	this
section.

Note	that	the	last	relevant	output	activation	of	the	RNN	has	a	different	index	for	each
sequence	in	the	training	batch.	This	is	because	each	review	has	a	different	length.	We
already	know	the	length	of	each	sequence,	so	how	do	we	use	that	to	select	the	last
activations?	The	problem	is	that	we	want	to	index	in	the	dimension	of	time	steps,	which	is
the	second	dimension	in	the	batch	of	shape	sequences	x	time_steps	x	word_vectors.
@lazy_property

def	prediction(self):

				#	Recurrent	network.

				output,	_	=	tf.nn.dynamic_rnn(

								self.params.rnn_cell(self.params.rnn_hidden),

								self.data,

								dtype=tf.float32,

								sequence_length=self.length,

				)

				last	=	self._last_relevant(output,	self.length)

				#	Softmax	layer.

				num_classes	=	int(self.target.get_shape()[1])

				weight	=	tf.Variable(tf.truncated_normal(

								[self.params.rnn_hidden,	num_classes],	stddev=0.01))

				bias	=	tf.Variable(tf.constant(0.1,	shape=[num_classes]))

				prediction	=	tf.nn.softmax(tf.matmul(last,	weight)	+	bias)

				return	prediction

As	of	now,	TensorFlow	only	supports	indexing	along	the	first	dimension,	using
tf.gather().	We	thus	flatten	the	first	two	dimensions	of	the	output	activations	from	their
shape	of	sequences	x	time_steps	x	word_vectors	and	construct	an	index	into	this	resulting	tensor.
The	index	takes	into	account	the	start	indices	for	each	sequence	in	the	flat	tensor	and	adds
the	sequence	length	to	it.	Actually,	we	only	add	length	-	1	so	that	we	select	the	last	valid
time	step.
@staticmethod

def	_last_relevant(output,	length):

				batch_size	=	tf.shape(output)[0]

				max_length	=	int(output.get_shape()[1])

				output_size	=	int(output.get_shape()[2])

				index	=	tf.range(0,	batch_size)	*	max_length	+	(length	-	1)

				flat	=	tf.reshape(output,	[-1,	output_size])

				relevant	=	tf.gather(flat,	index)

				return	relevant

We	will	be	able	to	train	the	whole	model	end-to-end	with	TensorFlow	propagating	the
errors	through	the	softmax	layer	and	the	used	time	steps	of	the	RNN.	The	only	thing	that
is	missing	for	training	is	a	cost	function.



Gradient	clipping
For	sequence	classification,	we	can	use	any	cost	function	that	makes	sense	for

classification	because	the	model	output	is	just	a	probability	distribution	over	the	available
classes.	In	our	example,	the	two	classes	are	positive	and	negative	sentiment	and	we	will
use	a	standard	cross-entropy	cost	as	explain	in	the	previous	chapter	on	object	recognition
and	classification.

To	minimize	the	cost	function,	we	use	the	optimizer	defined	in	the	configuration.
However,	we	will	improve	on	what	we’ve	learned	so	far	by	adding	gradient	clipping.
RNNs	are	quite	hard	to	train	and	weights	tend	to	diverge	if	the	hyper	parameters	do	not
play	nicely	together.	The	idea	of	gradient	clipping	is	to	restrict	the	the	values	of	the
gradient	to	a	sensible	range.	This	way,	we	can	limit	the	maximum	weight	updates.
@lazy_property

def	cost(self):

				cross_entropy	=	-tf.reduce_sum(self.target	*	tf.log(self.prediction))

				return	cross_entropy

@lazy_property

def	optimize(self):

				gradient	=	self.params.optimizer.compute_gradients(self.cost)

				if	self.params.gradient_clipping:

								limit	=	self.params.gradient_clipping

								gradient	=	[

												(tf.clip_by_value(g,	-limit,	limit),	v)

												if	g	is	not	None	else	(None,	v)

												for	g,	v	in	gradient]

				optimize	=	self.params.optimizer.apply_gradients(gradient)

				return	optimize

@lazy_property

def	error(self):

				mistakes	=	tf.not_equal(

								tf.argmax(self.target,	1),	tf.argmax(self.prediction,	1))

				return	tf.reduce_mean(tf.cast(mistakes,	tf.float32))

TensorFlow	supports	this	szenario	with	the	compute_gradients()	function	that	each
optimizer	instance	provides.	We	can	then	modify	the	gradients	and	apply	the	weight
changes	with	apply_gradients().	For	gradient	clipping,	we	set	elements	to	-limit	if	they	are
lower	than	that	or	to	limit	if	they	are	larger	than	that.	The	only	tricky	part	is	that
derivatives	in	TensorFlow	can	be	None	which	means	there	is	no	relation	between	a	variable
and	the	cost	function.	Mathematically,	those	derivatives	should	be	zero	vectors,	but	using
None	allows	for	internal	performance	optimizations.	We	handle	those	cases	by	just	passing
the	None	value	back	as	in	the	tuple.



Training	the	model
Let’s	now	train	the	advanced	model	we	defined	above.	As	we	said,	we	will	feed	the	the

movie	reviews	into	the	recurrent	network	word-by-word	so	each	time	step	is	a	batch	of
word	vectors.	We	adapt	the	batched()	function	from	the	last	section	to	lookup	the	word
vectors	and	padd	all	sequences	to	the	same	length	as	follows:
def	preprocess_batched(iterator,	length,	embedding,	batch_size):

				iterator	=	iter(iterator)

				while	True:

								data	=	np.zeros((batch_size,	length,	embedding.dimensions))

								target	=	np.zeros((batch_size,	2))

								for	index	in	range(batch_size):

												text,	label	=	next(iterator)

												data[index]	=	embedding(text)

												target[index]	=	[1,	0]	if	label	else	[0,	1]

								yield	data,	target

We	can	easily	train	the	model	now.	We	define	the	hyper	parameters,	load	the	dataset	and
embeddings,	and	run	the	model	on	the	preprocessed	training	batches.
params	=	AttrDict(

				rnn_cell=GRUCell,

				rnn_hidden=300,

				optimizer=tf.train.RMSPropOptimizer(0.002),

				batch_size=20,

)

reviews	=	ImdbMovieReviews('/home/user/imdb')

length	=	max(len(x[0])	for	x	in	reviews)

embedding	=	Embedding(

				'/home/user/wikipedia/vocabulary.bz2',

				'/home/user/wikipedia/embedding,npy',	length)

batches	=	preprocess_batched(reviews,	length,	embedding,	params.batch_size)

data	=	tf.placeholder(tf.float32,	[None,	length,	embedding.dimensions])

target	=	tf.placeholder(tf.float32,	[None,	2])

model	=	SequenceClassificationModel(data,	target,	params)

sess	=	tf.Session()

sess.run(tf.initialize_all_variables())

for	index,	batch	in	enumerate(batches):

				feed	=	{data:	batch[0],	target:	batch[1]}

				error,	_	=	sess.run([model.error,	model.optimize],	feed)

				print('{}:	{:3.1f}%'.format(index	+	1,	100	*	error))

This	time,	the	training	success	of	this	model	will	not	only	depend	on	the	network
structure	and	hyper	parameter,	but	also	on	the	quality	of	the	word	embeddings.	If	you	did
not	train	your	own	word	embeddings	as	described	in	the	last	section,	you	can	load	pre-
trained	embeddings	from	the	word2vec	project:
https://code.google.com/archive/p/word2vec/	that	implements	the	skip-gram	model,	or	the
very	similar	Glove	model	from	the	Stanford	NLP	group:
http://nlp.stanford.edu/projects/glove/.	In	both	cases	you	will	be	able	to	find	Python
loaders	on	the	web.

We	have	this	model	now,	so	what	can	you	do	with	it?	There	is	an	open	learning
competition	on	Kaggle,	a	famous	website	hosting	data	science	challenges.	It	uses	the	same
IMDB	movie	review	dataset	as	we	did	in	this	section.	So	if	you	are	interested	how	your
results	compare	to	others,	you	can	run	the	model	on	their	testset	and	upload	your	results	at
https://www.kaggle.com/c/word2vec-nlp-tutorial.

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/
https://www.kaggle.com/c/word2vec-nlp-tutorial


Sequence	Labelling

In	the	last	section,	we	built	a	sequence	classification	model	that	uses	an	LSTM	network
and	stacked	a	softmax	layer	ontop	of	the	last	activation.	Building	on	this,	we	will	now
tackle	the	slightly	harder	problem	of	sequence	labelling.	This	setting	differs	from
sequence	classification	in	that	we	want	to	predict	an	individual	class	for	each	frame	in	the
input	sequence.

For	example,	let’s	think	about	regocnizing	handwritten	text.	Each	word	is	a	sequence	of
letters	and	while	we	could	classify	each	letter	independendly,	human	language	has	a
strong	structure	that	we	can	take	advantage	of.	If	you	take	a	look	at	a	handwritten	sample,
there	are	often	letters	that	are	hard	to	read	on	their	own,	for	example	“n”,	“m”,	and	“u”.
They	can	be	regocnized	from	the	context	of	nearby	letters	however.	In	this	section,	we	will
use	RNNs	to	make	use	of	the	dependencies	between	letters	and	built	a	more	robust	OCR
(Optical	Character	Recognition)	system.



Optical	Character	Recognition	Dataset
As	an	example	of	sequence	labelling	problems,	we	will	take	a	look	at	the	OCR	dataset

collected	by	Rob	Kassel	at	the	MIT	Spoken	Language	Systems	Group	and	preprocessed
by	Ben	Taskar	at	the	Stanford	AI	group.	The	dataset	contains	individual	hand-written
letters	as	binary	images	of	16	times	8	pixels.	The	letters	are	arranged	into	sequences	that
where	each	sequence	forms	a	word.	In	the	whole	dataset,	there	are	about	6800	words	of
length	up	to	14.

Here	are	three	example	sequence	from	the	OCR	dataset.	The	words	are	“cafeteria”,
“puzzlement”,	and	“unexpected”.	The	first	letters	are	not	included	in	the	dataset	since	they
were	uppercase.	All	sequences	are	padded	to	maximal	length	of	14.	To	make	it	a	little
easier,	the	dataset	contains	only	lowercase	letters.	This	is	why	some	words	miss	their	first
letter.

The	dataset	is	available	at	http://ai.stanford.edu/~btaskar/ocr/	and	comes	as	a	gzipped
tab	separated	textfile	that	we	can	read	using	Python’s	csv	module.	Each	line	represents	a
letter	of	the	dataset	and	holds	attributes	like	and	id,	the	target	letter,	the	pixel	values	and
the	id	of	the	following	letter	of	the	word.
import	gzip

import	csv

import	numpy	as	np

class	OcrDataset:

				"""

				Dataset	of	handwritten	words	collected	by	Rob	Kassel	at	the	MIT	Spoken

				Language	Systems	Group.	Each	example	contains	the	normalized	letters	of	the

				word,	padded	to	the	maximum	word	length.	Only	contains	lower	case	letter,

				capitalized	letters	were	removed.

				From:	http://ai.stanford.edu/~btaskar/ocr/

				"""

				URL	=	'http://ai.stanford.edu/~btaskar/ocr/letter.data.gz'

				def	__init__(self,	cache_dir):

								path	=	download(type(self).URL,	cache_dir)

								lines	=	self._read(path)

								data,	target	=	self._parse(lines)

								self.data,	self.target	=	self._pad(data,	target)

http://ai.stanford.edu/~btaskar/ocr/


				@staticmethod

				def	_read(filepath):

								with	gzip.open(filepath,	'rt')	as	file_:

												reader	=	csv.reader(file_,	delimiter='\t')

												lines	=	list(reader)

												return	lines

				@staticmethod

				def	_parse(lines):

								lines	=	sorted(lines,	key=lambda	x:	int(x[0]))

								data,	target	=	[],	[]

								next_	=	None

								for	line	in	lines:

												if	not	next_:

																data.append([])

																target.append([])

												else:

																assert	next_	==	int(line[0])

												next_	=	int(line[2])	if	int(line[2])	>	-1	else	None

												pixels	=	np.array([int(x)	for	x	in	line[6:134]])

												pixels	=	pixels.reshape((16,	8))

												data[-1].append(pixels)

												target[-1].append(line[1])

								return	data,	target

				@staticmethod

				def	_pad(data,	target):

								max_length	=	max(len(x)	for	x	in	target)

								padding	=	np.zeros((16,	8))

								data	=	[x	+	([padding]	*	(max_length	-	len(x)))	for	x	in	data]

								target	=	[x	+	(['']	*	(max_length	-	len(x)))	for	x	in	target]

								return	np.array(data),	np.array(target)

We	first	sort	by	those	following	id	values	so	that	we	can	read	the	letters	of	each	word	in
the	correct	order.	Then,	we	continue	collecting	letters	until	the	field	of	the	next	id	is	not	set
in	which	case	we	start	a	new	sequence.	After	reading	the	target	letters	and	their	data
pixels,	we	pad	the	sequences	with	zero	images	so	that	they	fit	into	two	big	Numpy	arrays
containing	the	target	letters	and	all	the	pixel	data.



Softmax	shared	between	time	steps
This	time,	not	only	the	data	but	also	the	target	array	contains	sequences,	one	target	letter

for	each	image	frame.	The	easiest	approach	to	get	a	prediction	at	each	frame	is	to	augment
our	RNN	with	a	softmax	classifier	on	top	of	the	output	eat	each	letter.	This	is	very	similar
to	our	model	for	sequence	classification	from	the	last	section,	except	that	we	classifier	is
evaluated	at	each	frame	rather	than	just	at	the	last	one.
class	SequenceLabellingModel:

				def	__init__(self,	data,	target,	params):

								self.data	=	data

								self.target	=	target

								self.params	=	params

								self.prediction

								self.cost

								self.error

								self.optimize

				@lazy_property

				def	length(self):

								pass

				@lazy_property

				def	prediction(self):

								pass

				@lazy_property

				def	cost(self):

								pass

				@lazy_property

				def	error(self):

								pass

				@lazy_property

				def	optimize(self):

								pass

Let’s	implement	the	methods	of	our	sequence	labelling	mode.	First	off,	we	again	need
to	compute	the	sequence	lengths.	We	already	did	this	in	the	last	section	so	there	is	not
much	to	add	here.
@lazy_property

def	length(self):

				used	=	tf.sign(tf.reduce_max(tf.abs(self.data),	reduction_indices=2))

				length	=	tf.reduce_sum(used,	reduction_indices=1)

				length	=	tf.cast(length,	tf.int32)

				return	length

Now,	we	come	to	the	prediction,	were	the	main	different	to	the	sequence	classification
model	lies.	There	would	be	two	ways	to	add	a	softmax	layer	to	all	frames.	We	could	either
add	several	different	classifiers	or	share	the	same	among	all	frames.	Since	classifying	the
third	letter	should	not	be	very	different	from	classifying	the	eighth	letter,	it	makes	sense	to
take	the	latter	approach.	This	way,	the	classifier	weights	are	also	trainer	more	often
because	each	letter	of	the	word	contributes	to	training	them.

In	order	to	implement	a	shared	layer	in	TensorFlow,	we	have	to	apply	a	little	trick.	A
weight	matrix	of	a	fully-connected	layer	always	has	the	dimentions	batch_size	x	in_size	x
out_size.	But	we	now	have	two	input	dimensions	along	which	we	want	to	apply	the	matrix,
batch_size	and	sequence_steps.



What	we	can	do	to	circumvent	this	problem	is	to	flatten	the	input	to	the	layer,	in	this
case	the	ougoing	activation	of	the	RNN,	to	shape	batch_size	*	sequence_steps	x	in_size.	This
way,	it	just	looks	like	a	large	batch	to	the	weight	matrix.	Of	course	we	have	to	reshape	the
results	bach	to	unflatten	them.
@lazy_property

def	prediction(self):

				output,	_	=	tf.nn.dynamic_rnn(

								GRUCell(self.params.rnn_hidden),

								self.data,

								dtype=tf.float32,

								sequence_length=self.length,

				)

				#	Softmax	layer.

				max_length	=	int(self.target.get_shape()[1])

				num_classes	=	int(self.target.get_shape()[2])

				weight	=	tf.Variable(tf.truncated_normal(

								[self.params_rnn_hidden,	num_classes],	stddev=0.01))

				bias	=	tf.Variable(tf.constant(0.1,	shape=[num_classes]))

				#	Flatten	to	apply	same	weights	to	all	time	steps.

				output	=	tf.reshape(output,	[-1,	self.params.rnn_hidden])

				prediction	=	tf.nn.softmax(tf.matmul(output,	weight)	+	bias)

				prediction	=	tf.reshape(prediction,	[-1,	max_length,	num_classes])

				return	prediction

The	cost	and	error	function	change	slightly	compared	to	what	we	had	for	sequence
classification.	Namely,	there	is	now	an	prediction-target	pair	for	each	frame	in	the
sequence,	so	we	have	to	average	over	that	dimension	as	well.	However,	tf.reduce_mean()
doesn’t	work	here	since	it	would	normalize	by	the	tensor	length	which	is	the	maximum
sequence	length.	Instead,	we	want	to	normalize	by	the	actual	sequence	lengths	computed
earlier.	Thus,	we	manually	use	tf.reduce_sum()	and	a	division	to	obtain	the	correct	mean.
@lazy_property

def	cost(self):

				#	Compute	cross	entropy	for	each	frame.

				cross_entropy	=	self.target	*	tf.log(self.prediction)

				cross_entropy	=	-tf.reduce_sum(cross_entropy,	reduction_indices=2)

				mask	=	tf.sign(tf.reduce_max(tf.abs(self.target),	reduction_indices=2))

				cross_entropy	*=	mask

				#	Average	over	actual	sequence	lengths.

				cross_entropy	=	tf.reduce_sum(cross_entropy,	reduction_indices=1)

				cross_entropy	/=	tf.cast(self.length,	tf.float32)

				return	tf.reduce_mean(cross_entropy)

Analogously	to	the	cost,	we	have	to	adjust	the	error	function.	The	axis	that	tf.argmax()
operates	on	is	axis	two	rather	than	axis	one	now.	Then	we	mask	padding	frames	and
compute	the	average	over	the	actual	sequence	length.	The	last	tf.reduce_mean()	averages
over	the	words	in	the	data	batch.
@lazy_property

def	error(self):

				mistakes	=	tf.not_equal(

								tf.argmax(self.target,	2),	tf.argmax(self.prediction,	2))

				mistakes	=	tf.cast(mistakes,	tf.float32)

				mask	=	tf.sign(tf.reduce_max(tf.abs(self.target),	reduction_indices=2))

				mistakes	*=	mask

				#	Average	over	actual	sequence	lengths.

				mistakes	=	tf.reduce_sum(mistakes,	reduction_indices=1)

				mistakes	/=	tf.cast(self.length,	tf.float32)

				return	tf.reduce_mean(mistakes)

The	nice	thing	about	TensorFlow’s	automatic	gradient	computation	is	that	we	can	use
the	same	optimization	operation	for	this	model	as	we	used	for	sequence	classification,	just
plugging	in	the	new	cost	function.	We	will	apply	gradient	clipping	in	all	RNNs	from	now



on,	since	it	can	prevent	divergence	during	training	while	it	does	not	have	any	negative
impace.
@lazy_property

def	optimize(self):

				gradient	=	self.params.optimizer.compute_gradients(self.cost)

				if	self.params.gradient_clipping:

								limit	=	self.params.gradient_clipping

								gradient	=	[

												(tf.clip_by_value(g,	-limit,	limit),	v)

												if	g	is	not	None	else	(None,	v)

												for	g,	v	in	gradient]

				optimize	=	self.params.optimizer.apply_gradients(gradient)

				return	optimize



Training	the	Model
Now	we	can	put	together	the	pieces	described	so	far	and	train	the	model.	The	imports

and	configuration	parameters	should	be	familiar	to	you	from	the	previous	section.	We	then
use	get_dataset()	to	download	and	preprocess	the	handwritten	images.	This	is	also	where
we	encode	the	targets	from	lower-case	letters	to	one-hot	vectors.	After	the	encoding,	we
shuffle	the	data	so	that	we	get	unbiased	splits	for	training	and	testing.
import	random

params	=	AttrDict(

				rnn_cell=tf.nn.rnn_cell.GRUCell,

				rnn_hidden=300,

				optimizer=tf.train.RMSPropOptimizer(0.002),

				gradient_clipping=5,

				batch_size=10,

				epochs=20,

				epoch_size=50,

)

def	get_dataset():

				dataset	=	OcrDataset('~/.dataset/book/ocr')

				#	Flatten	images	into	vectors.

				dataset.data	=	dataset.data.reshape(dataset.data.shape[:2]	+	(-1,))

				#	One-hot	encode	targets.

				target	=	np.zeros(dataset.target.shape	+	(26,))

				for	index,	letter	in	np.ndenumerate(dataset.target):

								if	letter:

												target[index][ord(letter)	-	ord('a')]	=	1

				dataset.target	=	target

				#	Shuffle	order	of	examples.

				order	=	np.random.permutation(len(dataset.data))

				dataset.data	=	dataset.data[order]

				dataset.target	=	dataset.target[order]

				return	dataset

#	Split	into	training	and	test	data.

dataset	=	get_dataset()

split	=	int(0.66	*	len(dataset.data))

train_data,	test_data	=	dataset.data[:split],	dataset.data[split:]

train_target,	test_target	=	dataset.target[:split],	dataset.target[split:]

#	Compute	graph.

_,	length,	image_size	=	train_data.shape

num_classes	=	train_target.shape[2]

data	=	tf.placeholder(tf.float32,	[None,	length,	image_size])

target	=	tf.placeholder(tf.float32,	[None,	length,	num_classes])

model	=	SequenceLabellingModel(data,	target,	params)

After	training	of	1000	words	our	model	classifies	about	9%	of	all	letter	in	the	test	set
correctly.	That’s	not	too	bad,	but	there	is	also	room	for	improvement	here.



Our	current	model	very	similar	to	the	model	for	sequence	classification.	This	was	by
intent	so	that	you	see	the	differences	needed	to	apply	in	order	to	adapt	existing	models	to
new	tasks.	What	worked	on	another	problem	is	more	likely	to	work	well	on	a	new
problem	than	if	you	would	make	a	wild	guess.	However,	we	can	do	better!	In	the	next
section,	we	will	try	and	improve	on	our	results	using	a	more	advanced	recurrent
architecture.



Bidirectional	RNNs
How	can	we	improve	the	results	on	the	OCR	dataset	that	we	got	with	the	RNN	plus

Softmax	architecture?	Well,	let’s	take	a	look	at	our	motivation	to	use	RNNs.	The	reason
we	chose	them	for	the	OCR	dataset	was	that	there	are	dependencies,	or	mutual
information,	between	the	letters	within	one	word.	The	RNN	stores	information	about	all
the	previous	inputs	of	the	same	word	in	its	hidden	activation.

If	you	think	about	it,	the	recurrency	in	our	model	doesn’t	help	much	for	classifying	the
first	few	letters	because	the	network	hasn’t	had	many	inputs	yet	to	infer	additional
information	from.	In	sequence	classification,	this	wasn’t	a	problem	since	the	network	sees
all	frames	before	making	a	descision.	In	sequence	labelling,	we	can	address	this
shortcoming	using	bidirectional	RNNs,	a	technique	that	holds	state	or	the	art	in	several
classification	problems.

The	idea	of	bidirectional	RNNs	is	simple.	There	are	two	RNNs	that	take	a	look	at	the
input	sequence,	one	going	from	the	left	reading	the	word	in	normal	order,	and	one	going
from	the	right	reading	the	letters	in	reverse	order.	At	each	time	step,	we	now	got	two
output	activations	that	we	concatenate	before	passing	them	up	into	the	shared	softmax
layer.	Using	this	architecture,	the	classifier	can	access	information	of	the	whole	word	at
each	letter.



How	can	we	implement	bidirectional	RNNs	in	TensorFlow?	There	is	actually	an
implementation	available	with	tf.model.rnn.bidirectional_rnn.	However,	we	want	to	learn
how	to	build	complex	models	ourselves	and	so	let’s	build	our	own	implementation.	I’ll
walk	you	through	the	steps.	First,	we	split	the	prediction	property	into	two	functions	so	we
can	focus	on	smaller	parts	at	the	time.
@lazy_property

def	prediction(self):

				output	=	self._bidirectional_rnn(self.data,	self.length)

				num_classes	=	int(self.target.get_shape()[2])

				prediction	=	self._shared_softmax(output,	num_classes)

				return	prediction

def	_bidirectional_rnn(self,	data,	length):

				pass

def	_shared_softmax(self,	data,	out_size):

				pass

The	_shared_softmax()	function	above	is	easy;	we	already	had	the	code	in	the	prediction
property	before.	The	difference	is	that	this	time,	we	infer	the	input	size	from	the	data	tensor
that	gets	passed	into	the	function.	This	way,	we	can	reuse	the	function	for	other
architectures	if	needed.	Then	we	use	the	same	flattening	trick	to	share	the	same	softmax
layer	accross	all	time	steps.
aef	_shared_softmax(self,	data,	out_size):

				max_length	=	int(data.get_shape()[1])

				in_size	=	int(data.get_shape()[2])

				weight	=	tf.Variable(tf.truncated_normal(

								[in_size,	out_size],	stddev=0.01))

				bias	=	tf.Variable(tf.constant(0.1,	shape=[out_size]))

				#	Flatten	to	apply	same	weights	to	all	time	steps.

				flat	=	tf.reshape(data,	[-1,	in_size])

				output	=	tf.nn.softmax(tf.matmul(flat,	weight)	+	bias)

				output	=	tf.reshape(output,	[-1,	max_length,	out_size])

				return	output

Here	somes	the	interesting	part,	the	implementation	of	bidirectional	RNNs.	As	you	can
see,	we	have	create	two	RNNs	using	tf.nn.dynamic_rnn.	The	forward	network	should	look
familiar	while	the	backward	network	is	new.

Instead	of	just	feeding	in	the	data	into	the	backward	RNN,	we	first	reverse	the



sequences.	This	is	easier	than	implementing	a	new	RNN	operation	that	would	go
backwards.	TensorFlow	helps	us	with	with	the	tf.reverse_sequence()	functions	that	takes	care
of	only	reversing	the	used	frames	up	to	sequence_length.	Note	that	at	the	moment	of	writing
this,	the	function	expects	the	lengths	to	be	a	64-bit	integer	tensor.	It’s	likely	that	it	will	also
work	with	32-bit	tensors	and	you	can	just	pass	in	self.length.
def	_bidirectional_rnn(self,	data,	length):

				length_64	=	tf.cast(length,	tf.int64)

				forward,	_	=	tf.nn.dynamic_rnn(

								cell=self.params.rnn_cell(self.params.rnn_hidden),

								inputs=data,

								dtype=tf.float32,

								sequence_length=length,

								scope='rnn-forward')

				backward,	_	=	tf.nn.dynamic_rnn(

								cell=self.params.rnn_cell(self.params.rnn_hidden),

								inputs=tf.reverse_sequence(data,	length_64,	seq_dim=1),

								dtype=tf.float32,

								sequence_length=self.length,

								scope='rnn-backward')

				backward	=	tf.reverse_sequence(backward,	length_64,	seq_dim=1)

				output	=	tf.concat(2,	[forward,	backward])

				return	output

We	also	use	the	scope	parameter	this	time.	Why	do	we	need	this?	As	explained	in	the
TensorFlow	Fundamentals	chapter,	nodes	in	the	compute	graph	have	names.	scope	is	the
name	of	the	variable	scope	used	by	rnn.dynamic_cell	and	it	detauls	to	RNN.	This	time	we	have
two	RNNs	that	have	different	parameters	so	they	have	to	live	in	different	scopes.

After	feeding	the	reversed	sequence	into	the	backward	RNN,	we	again	reverse	the
network	outputs	to	align	with	the	forward	outputs.	Then	we	concatenate	both	tensors
along	the	dimension	of	the	output	neurons	of	the	RNNs	and	return	this.	For	example,	with
a	batch	size	of	50,	300	hidden	units	per	RNN	and	words	of	up	to	14	letters,	the	resulting
tensor	would	have	the	shape	50	x	14	x	600.

Okay	cool,	we	built	our	first	architecture	that	is	composed	of	multiple	RNNs!	Let’s	see
how	it	performs	using	the	training	code	from	the	last	section.	As	you	can	see	from
comparing	the	graphs,	the	bidirectional	model	performs	significantly	better.	After	seeing
1000	words,	it	only	misclassifies	4%	of	the	letters	in	the	test	split.



To	summarize,	in	this	section	we	learned	how	to	use	RNNs	for	sequence	labelling	and
the	differences	to	the	sequence	classification	setting.	Namely,	we	want	a	classifier	that
takes	the	RNN	outputs	and	is	shared	accross	all	time	steps.

This	architecture	can	be	improved	drastically	by	adding	a	second	RNN	that	visits	the
sequence	from	back	to	front	and	combining	the	outputs	at	each	time	step.	This	is	because
now	information	of	the	whole	sequence	are	available	for	the	classification	of	each	letter.

In	the	next	section,	we	will	take	a	look	at	training	an	RNN	in	an	unsupervised	fashion	in
order	to	learn	language.



Predictive	coding

We	already	learned	how	to	use	RNNs	to	classify	the	sentiment	of	movie	reviews,	and	to
recognize	hand-written	words.	These	applications	have	been	supervised,	meaning	that	we
needed	a	labelled	dataset.	Another	interesting	learning	setting	is	called	predictive	coding.
We	just	show	the	RNN	a	lot	of	sequences	and	train	it	to	predict	the	next	frame	of	the
sequence.

Let’s	take	text	as	an	example,	where	predicting	the	likelihood	of	the	next	word	in	a
sentence	is	called	language	modelling.	Why	would	it	be	useful	to	predict	the	next	word	in
a	sentence?	One	groups	of	applications	is	recongnizing	language.	Let’s	say	you	want	to
build	a	handwriting	recognizer	that	translates	scans	of	handwriting	to	typed	text.	While
you	can	try	to	recover	all	the	words	from	the	input	scans	only,	knowing	the	distribution	of
likely	next	words	already	narrows	down	the	candidate	words	to	decide	between.	It’s	the
difference	between	dumb	recognition	of	shapes	and	reading,	basically.

Besides	improving	performance	in	tasks	involving	natural	language,	we	can	also	sample
from	the	distribution	of	what	the	network	thinks	should	follow	next	in	order	to	generate
text.	After	training,	we	can	start	feeding	a	seed	word	into	the	RNN	and	look	at	the	next
word	prediction.	Then	we	feed	the	most	likely	word	back	into	the	RNN	as	the	next	input
so	see	what	it	thinks	should	follow	now.	Doing	this	repeatedly,	we	can	generate	new
content	looking	similar	to	the	training	data.



The	interesting	thing	is	that	predictive	coding	trains	the	network	to	compress	all	the
important	information	of	any	sequence.	The	next	words	in	a	sentence	usually	depends	on
the	previous	words,	their	order	and	relations	between	each	other.	A	network	that	is	able	to
accurately	predict	the	next	character	in	natural	language	thus	needs	to	capture	the	rules	of
grammar	and	language	well.



Character-level	language	modelling
We	will	now	build	a	predictive	coding	language	model	using	an	RNN.	Instead	of	the

traditional	approach	to	operate	on	words	though,	we	will	have	our	RNN	operate	on
individual	characters.	So	instead	of	word	embeddings	as	inputs,	we	have	a	little	over	26
one-hot	encoded	characters	to	represent	the	alphabet	and	some	punctuation	and
whitespace.

It’s	known	yet	whether	word-level	or	character-level	language	modelling	is	the	better
approach.	The	beauty	of	of	the	character	approach	is	that	the	network	does	not	only	learn
how	to	combine	words,	but	also	how	to	spell	them.	In	addition,	the	input	to	our	network	is
lower-dimensional	than	if	we	would	use	word	embeddings	of	size	300	or	even	one-hot
encoded	words.	As	a	bonus,	we	don’t	have	to	account	for	unknown	words	anymore,
because	they	are	composed	of	letters	that	the	network	already	knows	about.	This,	in
theory,	even	allows	the	network	could	invent	new	words.

Andrew	Karpathy	experimented	with	RNNs	operating	on	chracters	in	2015	and	was
able	to	generate	surprisingly	nice	samples	of	Shakespeare	scripts,	Linux	kernel	and	driver
code,	and	Wikipedia	articles	including	correct	markup	syntax.	The	project	is	available	on
Github	under	https://github.com/karpathy/char-rnn.	We	will	now	train	a	similar	model	on
the	abstracts	of	machine	learning	publications	and	see	if	we	can	generate	some	more-or-
less	plausible	new	abstracts!

https://github.com/karpathy/char-rnn


ArXiv	abstracts	API
ArXiv.org	is	an	online	library	hosting	many	research	papers	from	computer	science,

maths,	physics	and	biology.	You	probably	already	heard	of	it	if	your	are	following
machine	learning	research.	Fortunately,	the	platform	provides	a	web-based	API	to	retrieve
publications.	Let’s	write	a	class	that	fetches	the	abstracts	from	ArXiv	for	a	given	search
query.
import	requests

import	os

from	bs4	import	BeautifulSoup

class	ArxivAbstracts:

				def	__init__(self,	cache_dir,	categories,	keywords,	amount=None):

								pass

				def	_fetch_all(self,	amount):

								pass

				def	_fetch_page(self,	amount,	offset):

								pass

				def	_fetch_count(self):

								pass

				def	_build_url(self,	amount,	offset):

								pass

In	the	constructor,	we	first	check	if	there	is	already	a	previous	dump	of	abstracts
available.	If	it	is,	we	will	use	that	instead	of	hitting	the	API	again.	You	could	imagine
more	complicated	logic	to	check	if	the	existing	file	matches	the	new	categories	and
keywords,	but	for	now	it	is	sufficient	to	delete	or	move	the	old	dump	manually	to	perform
a	new	query.	If	no	dump	is	available,	we	call	the	_fetch_all()	method	and	write	the	lines	it
yields	to	disk.
def	__init__(self,	cache_dir,	categories,	keywords,	amount=None):

				self.categories	=	categories

				self.keywords	=	keywords

				cache_dir	=	os.path.expanduser(cache_dir)

				ensure_directory(cache_dir)

				filename	=	os.path.join(cache_dir,	'abstracts.txt')

				if	not	os.path.isfile(filename):

								with	open(filename,	'w')	as	file_:

												for	abstract	in	self._fetch_all(amount):

																file_.write(abstract	+	'\n')

				with	open(filename)	as	file_:

								self.data	=	file_.readlines()

Since	we	are	interested	in	machine	learning	papers,	we	will	search	within	the	categories
Machine	Learning,	Neural	and	Evolutionary	Computing,	and	Optimization	and	Control.
We	further	restrict	the	results	to	those	containing	any	of	the	words	neural,	network	or	deep
in	the	metadata.	This	gives	us	about	7	MB	of	text	which	is	a	fair	amount	of	data	to	learn	a
simple	RNN	language	model.	It	would	be	reasonable	to	use	more	data	and	get	better
results,	but	we	don’t	want	to	wait	for	too	many	hours	of	training	to	pass	before	seeing
some	results.	Feel	free	to	use	a	broader	search	query	and	train	this	model	on	more	data
though.
ENDPOINT	=	'http://export.arxiv.org/api/query'

def	_build_url(self,	amount,	offset):

				categories	=	'	OR	'.join('cat:'	+	x	for	x	in	self.categories)



				keywords	=	'	OR	'.join('all:'	+	x	for	x	in	self.keywords)

				url	=	type(self).ENDPOINT

				url	+=	'?search_query=(({})	AND	({}))'.format(categories,	keywords)

				url	+=	'&max_results={}&offset={}'.format(amount,	offset)

				return	url

def	_fetch_count(self):

				url	=	self._build_url(0,	0)

				response	=	requests.get(url)

				soup	=	BeautifulSoup(response.text,	'lxml')

				count	=	int(soup.find('opensearch:totalresults').string)

				print(count,	'papers	found')

				return	count

The	_fetch_all()	method	basically	performs	pagination.	The	API	only	gives	us	a	certain
amount	of	abstracts	per	request	and	we	can	specify	an	offset	to	get	results	of	the	second,
third,	etc	“page”.	As	you	can	see,	we	can	specify	the	page	size	which	gets	passed	into	the
next	function,	_fetch_page().	In	theory,	we	could	set	the	page	size	to	a	huge	number	and	try
to	get	all	results	at	once.	In	practice	however,	this	makes	the	request	very	slow.	Fetching	in
pages	is	also	more	fault	tolerant	and	most	importantly,	does	not	stress	the	Arxiv	API	too
much.
PAGE_SIZE	=	100

def	_fetch_all(self,	amount):

				page_size	=	type(self).PAGE_SIZE

				count	=	self._fetch_count()

				if	amount:

								count	=	min(count,	amount)

				for	offset	in	range(0,	count,	page_size):

								print('Fetch	papers	{}/{}'.format(offset	+	page_size,	count))

								yield	from	self._fetch_page(page_size,	count)

Here	we	perform	the	actual	fetching.	The	result	comes	in	XML	and	we	use	the	popular
and	powerful	BeautifulSoup	library	to	extract	the	abstracts.	If	you	haven’t	installed	it
already,	you	can	issue	a	sudo	-H	pip3	install	beautifulsoup4.	BeautifulSoup	parses	the	XML
result	for	us	so	that	we	can	easily	iterate	over	the	tags	that	are	of	our	interest.	First,	we
look	for	<entry>	tags	corresponding	to	publications	and	within	each	of	them,	we	read	our
the	<summary>	tag	containing	the	abstract	text.
def	_fetch_page(self,	amount,	offset):

				url	=	self._build_url(amount,	offset)

				response	=	requests.get(url)

				soup	=	BeautifulSoup(response.text)

				for	entry	in	soup.findAll('entry'):

								text	=	entry.find('summary').text

								text	=	text.strip().replace('\n',	'	')

								yield	text



Preprocessing	the	data
import	random

import	numpy	as	np

class	Preprocessing:

				VOCABULARY	=	\

								"	$%'()+,-./0123456789:;=?ABCDEFGHIJKLMNOPQRSTUVWXYZ"	\

								"\\^_abcdefghijklmnopqrstuvwxyz{|}"

				def	__init__(self,	texts,	length,	batch_size):

								self.texts	=	texts

								self.length	=	length

								self.batch_size	=	batch_size

								self.lookup	=	{x:	i	for	i,	x	in	enumerate(self.VOCABULARY)}

				def	__call__(self,	texts):

								batch	=	np.zeros((len(texts),	self.length,	len(self.VOCABULARY)))

								for	index,	text	in	enumerate(texts):

												text	=	[x	for	x	in	text	if	x	in	self.lookup]

												assert	2	<=	len(text)	<=	self.length

												for	offset,	character	in	enumerate(text):

																code	=	self.lookup[character]

																batch[index,	offset,	code]	=	1

								return	batch

				def	__iter__(self):

								windows	=	[]

								for	text	in	self.texts:

												for	i	in	range(0,	len(text)	-	self.length	+	1,	self.length	//	2):

																windows.append(text[i:	i	+	self.length])

								assert	all(len(x)	==	len(windows[0])	for	x	in	windows)

								while	True:

												random.shuffle(windows)

												for	i	in	range(0,	len(windows),	self.batch_size):

																batch	=	windows[i:	i	+	self.batch_size]

																yield	self(batch)



Predictive	coding	model
By	now,	you	already	know	the	procedure:	We	have	defined	our	task,	have	written	a

parser	to	obtain	a	dataset	and	now	we	will	implement	the	neural	network	model	in
TensorFlow.	Because	for	predictive	coding	we	try	and	predict	the	next	character	of	the
input	sequence,	there	is	only	one	input	to	the	model,	which	is	the	sequence	parameter	in	the
constructor.

Moreover,	the	constructor	takes	a	parameter	object	to	change	options	in	a	central	place
and	make	our	experiments	reproducable.	The	third	parameter	initial=None	is	the	initial	inner
activation	of	the	recurrent	layer.	While	we	want	to	TensorFlow	to	initialize	the	hidden
state	to	zero	tensors	for	us,	it	will	become	handy	to	define	it	when	we	will	sample	from	the
learned	language	model	later.
import	tensorflow	as	tf

from	utility	import	lazy_property

class	PredictiveCodingModel:

				def	__init__(self,	params,	sequence,	initial=None):

								self.params	=	params

								self.sequence	=	sequence

								self.initial	=	initial

								self.prediction

								self.state

								self.cost

								self.error

								self.logprob

								self.optimize

				@lazy_property

				def	data(self):

								pass

				@lazy_property

				def	target(self):

								pass

				@lazy_property

				def	mask(self):

								pass

				@lazy_property

				def	length(self):

								pass

				@lazy_property

				def	prediction(self):

								pass

				@lazy_property

				def	state(self):

								pass

				@lazy_property

				def	forward(self):

								pass

				@lazy_property

				def	cost(self):

								pass

				@lazy_property

				def	error(self):

								pass

				@lazy_property



				def	logprob(self):

								pass

				@lazy_property

				def	optimize(self):

								pass

				def	_average(self,	data):

								pass

In	the	code	example	above,	you	can	see	an	overview	of	the	functions	that	our	model
will	implemnet.	Don’t	worry	it	that	looks	overwhelming	at	first:	We	just	want	to	expose
some	more	values	of	our	model	than	we	did	in	the	previous	chapters.

Let’s	start	with	the	data	processing.	As	we	said,	the	model	just	takes	a	one	block	of
sequences	as	input.	First,	we	use	that	to	construct	input	data	and	target	sequences	from	it.
This	is	where	we	introduce	a	temporal	difference	because	at	timestep	 ,	the	model	should
have	character	 	as	input	but	 	as	target.	As	easy	way	to	obtain	data	or	target	is	to	slice
the	provided	sequence	and	cut	away	the	last	or	the	first	frame,	respectively.

We	do	this	slicing	using	tf.slice()	which	takes	the	sequence	to	slice,	a	tuple	of	start
indices	for	each	dimension,	and	a	tuple	of	sizes	for	each	dimension.	For	the	sizes	-1	means
to	keep	all	elemnts	from	the	start	index	in	that	dimension	until	the	end.	Since	we	want	to
slices	frames,	we	only	care	about	the	second	dimension.
@lazy_property

def	data(self):

				max_length	=	int(self.sequence.get_shape()[1])

				return	tf.slice(self.sequence,	(0,	0,	0),	(-1,	max_length	-	1,	-1))

@lazy_property

def	target(self):

				return	tf.slice(self.sequence,	(0,	1,	0),	(-1,	-1,	-1))

@lazy_property

def	mask(self):

				return	tf.reduce_max(tf.abs(self.target),	reduction_indices=2)

@lazy_property

def	length(self):

				return	tf.reduce_sum(self.mask,	reduction_indices=1)

We	also	define	two	properties	on	the	target	sequence	as	we	already	discussed	in	earler
sections:	mask	is	a	tensor	of	size	batch_size	x	max_length	where	elements	are	zero	or	one
depending	on	wheter	the	respective	frame	is	used	or	a	padding	frame.	The	length	property
sums	up	the	mask	along	the	time	axis	in	order	to	obtain	the	length	of	each	sequence.

Note	that	the	mask	and	length	properties	are	also	valid	for	the	data	sequence	since
conceptually,	they	are	of	the	same	length	as	the	target	sequence.	However,	we	couldn’t
compute	them	on	the	data	sequence	since	it	still	contains	the	last	frame	that	is	not	needed
since	there	is	no	next	character	to	predict.	You	are	right,	we	sliced	away	the	last	frame	of
the	data	tensor,	but	that	didn’t	contained	the	actual	last	frame	of	most	sequences	but
mainly	padding	frames.	This	is	the	reason	why	we	will	use	mask	below	to	mask	our	cost
function.

Now	we	will	define	the	actual	network	that	consists	of	a	recurrent	network	and	a	shared
softmax	layer,	just	like	we	used	for	sequence	labelling	in	the	previous	section.	We	don’t
show	the	code	for	the	shared	softmax	layer	here	again	but	you	can	find	it	in	the	previous



section.
@lazy_property

def	prediction(self):

				prediction,	_	=	self.forward

				return	prediction

@lazy_property

def	state(self):

				_,	state	=	self.forward

				return	state

@lazy_property

def	forward(self):

				cell	=	self.params.rnn_cell(self.params.rnn_hidden)

				cell	=	tf.nn.rnn_cell.MultiRNNCell([cell]	*	self.params.rnn_layers)

				hidden,	state	=	tf.nn.dynamic_rnn(

								inputs=self.data,

								cell=cell,

								dtype=tf.float32,

								initial_state=self.initial,

								sequence_length=self.length)

				vocabulary_size	=	int(self.target.get_shape()[2])

				prediction	=	self._shared_softmax(hidden,	vocabulary_size)

				return	prediction,	state

The	new	part	about	the	neural	network	code	above	is	that	we	want	to	get	both	the
prediction	and	the	last	recurrent	activation.	Previously,	we	only	returned	the	prediction	but
the	last	activation	allows	us	to	generate	sequences	more	effectively	later.	Since	we	only
want	to	construct	the	graph	for	the	recurrent	network	once,	there	is	a	forward	property	that
return	the	tuple	of	both	tensors	and	prediction	and	state	are	just	there	to	provide	easy	access
from	the	outside.

The	next	part	of	our	model	is	the	cost	and	evaluation	functions.	At	each	time	step,	the
model	predicts	the	next	character	out	of	the	vocabulary.	This	is	a	classification	problem
and	we	use	the	cross	entropy	cost,	accordingly.	We	can	easily	compute	the	error	rate	of
character	predictions	as	well.

The	logprob	property	is	new.	It	describes	the	probability	that	our	model	assigned	to	the
correct	next	character	in	logarithmic	space.	This	is	basically	the	negative	cross	entropy
transformed	into	logarithmic	space	and	averaged	there.	Converting	the	result	back	into
linear	space	yields	the	so-called	perplexity,	a	common	measure	to	evaluate	the
performance	of	language	models.

The	perplexity	is	defined	as	 .	Intuitively,	it	represents	the	number	of	options
the	model	had	to	guess	between	at	each	time	step.	A	perfect	model	has	a	perplexity	of	1
while	a	model	that	always	outputs	the	same	probability	for	each	of	the	 	classes	has	a
perplexity	of	 .	The	perplexity	can	even	become	infinity	when	the	model	assigns	a	zero
probability	to	the	next	character	once.	We	prevent	this	extreme	case	by	clamping	the
prediction	probabilities	within	a	very	small	positive	number	and	one.
@lazy_property

def	cost(self):

				prediction	=	tf.clip_by_value(self.prediction,	1e-10,	1.0)

				cost	=	self.target	*	tf.log(prediction)

				cost	=	-tf.reduce_sum(cost,	reduction_indices=2)

				return	self._average(cost)

@lazy_property

def	error(self):



				error	=	tf.not_equal(

								tf.argmax(self.prediction,	2),	tf.argmax(self.target,	2))

				error	=	tf.cast(error,	tf.float32)

				return	self._average(error)

@lazy_property

def	logprob(self):

				logprob	=	tf.mul(self.prediction,	self.target)

				logprob	=	tf.reduce_max(logprob,	reduction_indices=2)

				logprob	=	tf.log(tf.clip_by_value(logprob,	1e-10,	1.0))	/	tf.log(2.0)

				return	self._average(logprob)

def	_average(self,	data):

				data	*=	self.mask

				length	=	tf.reduce_sum(self.length,	1)

				data	=	tf.reduce_sum(data,	reduction_indices=1)	/	length

				data	=	tf.reduce_mean(data)

				return	data

All	the	three	properties	above	are	averaged	over	the	frames	of	all	sequences.	With
fixed-length	sequences,	this	would	be	a	single	tf.reduce_mean(),	but	as	we	work	with
variable-length	sequences,	we	have	to	be	a	bit	more	careful.	First,	we	mask	out	padding
frames	by	multiplying	with	the	mask.	Then	we	aggregate	along	the	frame	size.	Because
the	three	functions	above	all	multiply	with	the	target,	each	frame	has	just	one	element	set
and	we	use	tf.reduce_sum()	to	aggregate	each	frame	into	a	scalar.

Next,	we	want	to	average	along	the	frames	of	each	sequence	using	the	actual	sequence
length.	To	protect	against	division	by	zero	in	case	of	empty	sequences,	we	use	the
maximum	of	each	sequence	length	and	one.	Finally,	we	can	use	tf.reduce_mean()	to	average
over	the	examples	in	the	batch.

We	will	directly	head	to	training	this	model.	Note	that	we	did	not	the	define	the	optimize
operation.	It	is	identical	to	those	used	for	sequence	classification	or	sequence	labelling
ealier	in	the	chapter.



Training	the	model
Before	sampling	from	our	language	model,	we	have	to	put	together	the	blocks	we	just

built:	The	dataset,	the	preprocessing	step	and	the	neural	model.	Let’s	write	a	class	for	that
that	puts	together	these	steps,	prints	the	newly	introduced	perplexity	measure	and
regularly	stores	trainng	progress.	This	checkpointing	is	useful	to	continue	training	later	but
also	to	load	the	trained	model	for	sampling,	which	we	will	do	shortly.
import	os

class	Training:

				@overwrite_graph

				def	__init__(self,	params):

								self.params	=	params

								self.texts	=	ArxivAbstracts('/home/user/dataset/arxiv')()

								self.prep	=	Preprocessing(

												self.texts,	self.params.max_length,	self.params.batch_size)

								self.sequence	=	tf.placeholder(

												tf.float32,

												[None,	self.params.max_length,	len(self.prep.VOCABULARY)])

								self.model	=	PredictiveCodingModel(self.params,	self.sequence)

								self._init_or_load_session()

				def	__call__(self):

								print('Start	training')

								self.logprobs	=	[]

								batches	=	iter(self.prep)

								for	epoch	in	range(self.epoch,	self.params.epochs	+	1):

												self.epoch	=	epoch

												for	_	in	range(self.params.epoch_size):

																self._optimization(next(batches))

												self._evaluation()

								return	np.array(self.logprobs)

				def	_optimization(self,	batch):

								logprob,	_	=	self.sess.run(

												(self.model.logprob,	self.model.optimize),

												{self.sequence:	batch})

								if	np.isnan(logprob):

												raise	Exception('training	diverged')

								self.logprobs.append(logprob)

				def	_evaluation(self):

								self.saver.save(self.sess,	os.path.join(

												self.params.checkpoint_dir,	'model'),	self.epoch)

								self.saver.save(self.sess,	os.path.join(

												self.params.checkpoint_dir,	'model'),	self.epoch)

								perplexity	=	2	**	-(sum(self.logprobs[-self.params.epoch_size:])	/

																												self.params.epoch_size)

								print('Epoch	{:2d}	perplexity	{:5.1f}'.format(self.epoch,	perplexity))

				def	_init_or_load_session(self):

								self.sess	=	tf.Session()

								self.saver	=	tf.train.Saver()

								checkpoint	=	tf.train.get_checkpoint_state(self.params.checkpoint_dir)

								if	checkpoint	and	checkpoint.model_checkpoint_path:

												path	=	checkpoint.model_checkpoint_path

												print('Load	checkpoint',	path)

												self.saver.restore(self.sess,	path)

												self.epoch	=	int(re.search(r'-(\d+)$',	path).group(1))	+	1

								else:

												ensure_directory(self.params.checkpoint_dir)

												print('Randomly	initialize	variables')

												self.sess.run(tf.initialize_all_variables())

												self.epoch	=	1

The	constructor,	__call__(),	_optimization()	and	_evaluation()	should	be	easy	to	understand.
We	load	the	dataset	and	define	inputs	to	the	compute	graph,	train	on	the	preprocessed



dataset	and	keep	track	of	the	logarithmic	probabilities.	We	use	those	at	evaluation	time
between	each	training	epoch	to	compute	and	print	the	perplexity.

In	_init_or_load_session()	we	introduce	a	tf.train.Saver()	that	stores	the	current	values	of
all	tf.Variable()	in	the	graph	to	a	checkpoint	file.	While	the	actual	checkpointing	is	done	in
_evaluation(),	here	we	create	the	class	and	look	for	existing	checkpoints	to	load.	The
tf.train.get_checkpoint_state()	looks	for	TensorFlow’s	meta	data	file	in	our	checkpoint
directory.	As	of	writing,	it	only	contains	the	file	of	the	least	recent	checkpoint	file.

Checkpoint	files	are	prepended	by	a	number	that	we	can	specify,	in	our	case	the	epoch
number.	When	loading	a	checkpoint,	we	apply	a	regular	experession	with	Python’s	re
package	to	extract	that	epoch	number.	With	the	checkpointing	logic	set	up,	we	can	start
training.	Here	is	the	configuration:
def	get_params():

				checkpoint_dir	=	'/home/user/model/arxiv-predictive-coding'

				max_length	=	50

				sampling_temperature	=	0.7

				rnn_cell	=	GRUCell

				rnn_hidden	=	200

				rnn_layers	=	2

				learning_rate	=	0.002

				optimizer	=	tf.train.AdamOptimizer

				gradient_clipping	=	5

				batch_size	=	100

				epochs	=	20

				epoch_size	=	200

				return	AttrDict(**locals())

To	run	the	code,	you	can	just	call	Training(get_params())().	On	my	notebook,	it	takes	about
one	hour	for	the	20	epochs.	During	this	training,	the	model	saw	20	epochs	*	200	batches	*	100
examples	*	50	characters	=	20M	characters.

As	you	can	see	on	the	graph,	the	model	converges	at	a	perplexity	of	about	1.5	per
character.	This	means	that	with	our	model,	we	could	compress	a	text	at	an	average	of	1.5
bits	per	character.

For	comparison	with	word-level	language	models,	we	would	have	to	average	by	the



number	of	words	rather	than	the	number	of	characters.	As	a	rough	estimate,	we	can
multipy	it	by	the	average	number	of	characters	per	word,	which	is	…	on	our	test	set.



Generating	similiar	sequences
After	all	the	work,	we	can	now	use	the	trained	model	to	sample	new	seuquences.	We

will	write	a	small	class	that	work	similar	to	our	Training	class	in	that	it	loads	the	latest
model	checkpoint	from	disk	and	defines	placeholders	to	feed	data	into	the	compute	graph.
Of	course,	this	time	we	don’t	train	the	model	but	use	it	to	generate	new	data.
class	Sampling:

				@overwrite_graph

				def	__init__(self,	params):

								pass

				def	__call__(self,	seed,	length):

								pass

				def	_sample(self,	dist):

								pass

In	the	constructor,	we	create	an	instance	of	our	preprocessing	class	that	we	will	use
convert	the	current	generated	sequence	into	a	Numpy	vector	to	feed	into	the	graph.	The
sequence	placeholder	for	this	is	only	has	one	sequence	per	batch	because	we	don’t	want	to
generate	multiple	sequences	at	the	same	time.

One	thing	to	explain	is	the	sequence	length	of	two.	Remember	that	the	model	use	all	but
the	last	characters	as	input	data	and	all	but	the	first	characters	as	targets.	We	feed	in	the
last	character	of	the	current	text	and	any	second	character	as	sequence.	The	network	will
predict	the	target	for	the	first	character.	The	second	character	is	used	as	target	but	since	we
don’t	train	anything,	it	will	be	ignored.

You	may	wonder	how	we	can	get	along	with	only	passing	the	last	character	of	the
current	text	into	the	network.	The	trick	here	is	that	we	will	get	the	last	activation	of	the
recurrent	network	and	use	that	to	initialize	the	state	in	the	next	run.	For	this,	we	make	use
of	the	initial	state	argument	of	our	model.	For	the	GRUCell	that	we	used,	the	state	is	a	vector
of	size	rnn_layers	*	rnn_units.
@overwrite_graph

def	__init__(self,	params,	length):

				self.params	=	params

				self.prep	=	Preprocessing([],	2,	self.params.batch_size)

				self.sequence	=	tf.placeholder(

								tf.float32,	[1,	2,	len(self.prep.VOCABULARY)])

				self.state	=	tf.placeholder(

								tf.float32,	[1,	self.params.rnn_hidden	*	self.params.rnn_layers])

				self.model	=	PredictiveCodingModel(

								self.params,	self.sequence,	self.state)

				self.sess	=	tf.Session()

				checkpoint	=	tf.train.get_checkpoint_state(self.params.checkpoint_dir)

				if	checkpoint	and	checkpoint.model_checkpoint_path:

								tf.train.Saver().restore(

												self.sess,	checkpoint.model_checkpoint_path)

				else:

								print('Sampling	from	untrained	model.')

				print('Sampling	temperature',	self.params.sampling_temperature)

The	__call__()	functions	defines	the	logic	for	sampling	a	text	sequence.	We	start	with	the
seed	and	predict	one	character	at	a	time,	always	feeding	the	current	text	into	the	network.
We	use	the	same	preprocessing	class	to	convert	the	current	texts	into	padded	Numpy
blocks	and	feed	them	into	the	network.	Since	we	only	have	one	sequence	with	a	single



output	frame	in	the	batch,	we	only	care	at	the	prediction	at	index	[0,	0].	We	then	sample
from	the	softmax	output	using	the	_sample()	function	described	next.
def	__call__(self,	seed,	length=100):

				text	=	seed

				state	=	np.zeros((1,	self.params.rnn_hidden	*	self.params.rnn_layers))

				for	_	in	range(length):

								feed	=	{self.state:	state}

								feed[self.sequence]	=	self.prep([text[-1]	+	'?'])

								prediction,	state	=	self.sess.run(

												[self.model.prediction,	self.model.state],	feed)

								text	+=	self._sample(prediction[0,	0])

				return	text

How	do	we	sample	from	the	network	output?	Earlier	we	said	we	can	generate
sequences	by	taking	their	best	bet	and	feeding	that	in	as	the	next	frame.	Actually,	we	don’t
just	choose	the	most	likely	next	frame	but	randomly	sample	one	from	the	probability
distribution	that	the	RNN	outputs.	This	way,	words	with	a	high	output	probability	are
more	likely	to	be	chosen	but	less	likely	words	are	still	possible.	This	results	in	more
dynamic	generated	sequences.	Otherwise,	we	might	just	generate	the	same	average
sentence	again	and	again.

There	is	a	simple	mechanism	to	manually	control	how	advantageous	the	generation
process	should	be.	For	example,	if	we	always	choose	the	next	word	randomly	(and	ignore
the	network	output	completely),	we	get	very	new	and	unique	sentences,	but	they	would
not	make	any	sense.	If	we	always	choose	the	network’s	highest	output	as	the	next	word,
we	get	a	lot	of	common,	but	meaningless	words	like	“the,”	“a,”	etc.

The	way	can	control	this	behavior	is	by	introducing	a	temperature	parameter	 .	We	use
this	parameter	to	make	the	predictions	of	the	output	distribution	at	the	softmax	layer	more
similar	or	more	radical.	This	will	result	in	more	interesting	but	random	sequences	on	the
one	side	of	the	spectrum,	and	to	more	plausible	but	boring	sequences	on	the	other	side.
The	way	it	works	is	that	we	scale	the	scale	the	outputs	in	linear	space,	then	transform	them
back	into	exponential	space	and	normalize	again:

Since	the	network	already	outputs	a	softmax	distribution,	we	undo	it	by	applying	the
natural	logarithm.	We	don’t	have	to	undo	the	normalization	since	we	will	normalize	our
results	again,	anyways.	Then	we	divide	each	value	by	the	chosen	temperature	value	and
re-apply	the	softmax	function.
def	_sample(self,	dist):

				dist	=	np.log(dist)	/	self.params.sampling_temperature

				dist	=	np.exp(dist)	/	np.exp(dist).sum()

				choice	=	np.random.choice(len(dist),	p=dist)

				choice	=	self.prep.VOCABULARY[choice]

				return	choice



Let’s	run	the	code	by	calling	Sampling(get_params())('We',	500))	for	the	network	to	generate
a	new	abstract.	While	you	can	certainly	tell	that	this	text	is	not	written	by	a	human,	it	is
quite	remarkable	what	the	network	learns	from	examples.
We	study	nonconvex	encoder	in	the	networks	(RFNs)	hasding	configurations	with

non-convex	large-layers	of	images,	each	directions	literatic	for	layers.	More

recent	results	competitive	strategy,	in	which	data	at	training	and	more

difficult	to	parallelize.	Recent	Newutic	systems,	the	desirmally	parametrically

in	the	DNNs	improves	optimization	technique,	we	extend	their	important	and

subset	of	theidesteding	and	dast	and	scale	in	recent	advances	in	sparse

recovery	to	complicated	patterns	of	the	$L_p$

We	did	not	tell	the	RNN	what	a	space	is,	but	it	captured	statistically	dependencies	in	the
data	to	place	whitespace	accordingly	in	the	generated	text.	Even	between	some	non-
existent	words	that	the	network	dreamed	up,	the	whitespace	looks	reasonable.	Moreover,
those	words	are	composed	of	valid	combinations	of	vowels	and	consonants,	another
abstract	feature	learned	from	the	example	texts.



Conclusion

RNNs	are	powerful	sequential	models	that	are	applicable	to	a	wide	range	of	problems
and	are	responsible	for	state-of-the-art	results.	We	learned	how	to	optimize	RNNs,	what
problems	arise	doing	so,	and	how	architectures	like	LSTM	and	GRU	help	to	overcome
them.	Using	these	building	blocks,	we	solved	several	problems	in	natural	language
processing	and	related	domains	including	classifying	the	sentiment	of	movie	reviews,
recognizing	hand-written	words,	and	generating	fake	scientific	abstracts.

In	the	next	chapter	we	will	put	our	trained	models	in	production	so	they	can	be
consumed	by	other	applications.



Part	IV.	Additional	Tips,	Techniques,	and
Features





Chapter	7.	Deploying	Models	in
Production
So	far	we	have	seen	how	to	work	with	Tensorflow	for	building	and	training	models

from	basic	machine	learning	to	complex	deep	learning	networks.	In	this	chapter	we	are
going	to	focus	on	putting	our	trained	models	in	production	so	they	can	be	consumed	by
other	apps.

Our	goal	will	be	to	create	a	simple	webapp	that	will	allow	the	user	to	upload	an	image
and	run	the	Inception	model	over	it	for	classifying.



Setting	up	a	Tensorflow	serving	development	environment

Tensorflow	serving	is	the	tool	for	building	servers	that	allow	to	use	our	models	in
production.	There	are	two	flavors	to	use	it	during	development:	manually	installing	all	the
dependencies	and	tools	for	building	it	from	source,	or	using	a	Docker	image.	We	are	going
to	use	the	latter	since	it	is	easier,	cleaner,	and	allows	you	to	develop	in	other	environments
than	Linux.

In	case	you	don’t	know	what	a	Docker	image	is,	think	of	it	as	a	lightweight	version	of	a
virtual	machine	image	that	runs	without	the	overhead	of	running	a	full	OS	inside	it.	You
should	install	Docker	in	your	development	machine	first	if	you	haven’t.	Follow
instructions	from	https://docs.docker.com/engine/installation/.

To	use	the	Docker	image,	we	have	available	the
https://github.com/tensorflow/serving/blob/master/tensorflow_serving/tools/docker/Dockerfile.devel
file,	which	is	the	configuration	file	to	create	the	image	locally,	so	to	use	it	we	should:
docker	build	--pull	-t	$USER/tensorflow-serving-devel	https://raw.githubusercontent.com/tensorflow/serving/master/tensorflow_serving/tools/docker/Dockerfile.devel

Be	aware	that	it	may	take	a	while	to	download	all	of	the	dependencies.

Now	to	run	the	container	using	the	image	to	start	working	on	it	we	use:
docker	run	-v	$HOME:/mnt/home	-p	9999:9999	-it	$USER/tensorflow-serving-devel

That	will	load	mount	your	home	directory	in	the	/mnt/home	path	of	the	container,	and	will
let	you	working	in	a	terminal	inside	of	it.	This	is	useful	as	you	can	work	your	code	directly
on	your	favorite	IDE/editor,	and	just	use	the	container	for	running	the	build	tools.	It	will
also	leave	the	port	9999	open	to	access	it	from	your	host	machine	for	later	usage	of	the
server	we	are	going	to	build.

You	can	leave	the	container	terminal	with	exit,	which	will	stop	it	from	running,	and	start
it	again	as	many	times	you	want	using	command	above.

https://docs.docker.com/engine/installation/
https://github.com/tensorflow/serving/blob/master/tensorflow_serving/tools/docker/Dockerfile.devel


Bazel	workspace
Tensorflow	Serving	programs	are	coded	in	C++	and	should	be	built	using	Google’s

Bazel	build	tool.	We	are	going	to	run	Bazel	from	inside	the	recently	created	container.

Bazel	manages	third	party	dependencies	at	code	level,	downloading	and	building	them,
as	long	as	they	are	also	built	with	Bazel.	To	define	which	third	party	dependencies	our
project	would	support,	we	must	define	a	WORKSPACE	file	at	the	root	of	our	project	repository.

The	dependencies	we	need	are	Tensorflow	Serving	repository,	and	for	the	case	of	our
example,	the	Tensorflow	Models	repository	includes	the	Inception	model	code.

Sadly,	at	the	moment	of	this	writing,	Tensorflow	Serving	does	not	support	being
referenced	directly	thru	Bazel	as	a	Git	repository,	so	we	must	include	it	as	a	Git
submodule	in	our	project:
#	on	your	local	machine

mkdir	~/serving_example

cd	~/serving_example

git	init

git	submodule	add	https://github.com/tensorflow/serving.git	tf_serving

git	submodule	update	--init	--recursive

We	now	define	the	third	party	dependencies	as	locally	stored	files	using	the
local_repository	rule	on	the	WORKSPACE	file.	We	also	have	to	initialize	Tensorflow	dependencies
using	the	tf_workspace	rule	imported	from	the	project:
#	Bazel	WORKSPACE	file

workspace(name	=	"serving")

local_repository(

				name	=	"tf_serving",

				path	=	__workspace_dir__	+	"/tf_serving",

)

local_repository(

				name	=	"org_tensorflow",

				path	=	__workspace_dir__	+	"/tf_serving/tensorflow",

)

load('//tf_serving/tensorflow/tensorflow:workspace.bzl',	'tf_workspace')

tf_workspace("tf_serving/tensorflow/",	"@org_tensorflow")

bind(

				name	=	"libssl",

				actual	=	"@boringssl_git//:ssl",

)

bind(

				name	=	"zlib",

				actual	=	"@zlib_archive//:zlib",

)

#	only	needed	for	inception	model	export

local_repository(

				name	=	"inception_model",

				path	=	__workspace_dir__	+	"/tf_serving/tf_models/inception",

)

As	a	last	step	we	have	to	run	./configure	for	Tensorflow	from	within	the	container:
#	on	the	docker	container

cd	/mnt/home/serving_example/tf_serving/tensorflow

./configure



Exporting	trained	models

Once	our	model	is	trained	and	we	are	happy	with	the	evaluation,	we	will	need	to	export
its	computing	graph	along	its	variables	values	in	order	to	make	it	available	for	production
usage.

The	graph	of	the	model	should	be	slightly	changed	from	its	training	version,	as	it	must
take	its	inputs	from	placeholders	and	run	a	single	step	of	inference	on	them	to	compute	the
output.	For	the	example	of	the	Inception	model,	and	for	any	image	recognition	model	in
general,	we	want	the	input	to	be	a	single	string	representing	a	JPEG	encoded	image,	so	we
can	easily	send	it	from	our	consumer	app.	This	is	quite	different	from	the	training	input
that	reads	from	a	TFRecords	file.

The	general	form	for	defining	the	inputs	should	look	like:
def	convert_external_inputs(external_x):

			#	transform	the	external	input	to	the	input	format	required	on	inference

def	inference(x):

			#	from	the	original	model…

external_x	=	tf.placeholder(tf.string)

x	=	convert_external_inputs(external_x)

y	=	inference(x)

In	the	code	above	we	define	the	placeholder	for	the	input.	We	call	a	function	to	convert
the	external	input	represented	in	the	placeholder	to	the	format	required	for	the	original
model	inference	method.	For	example	we	will	convert	from	the	JPEG	string	to	the	image
format	required	for	Inception.	Finally	we	call	the	original	model	inference	method	with
the	converted	input.

For	example,	for	the	Inception	model	we	should	have	methods	like:
import	tensorflow	as	tf

from	tensorflow_serving.session_bundle	import	exporter

from	inception	import	inception_model

def	convert_external_inputs(external_x):

				#	transform	the	external	input	to	the	input	format	required	on	inference

				#	convert	the	image	string	to	a	pixels	tensor	with	values	in	the	range	0,1

				image	=	tf.image.convert_image_dtype(tf.image.decode_jpeg(external_x,	channels=3),	tf.float32)

				#	resize	the	image	to	the	model	expected	width	and	height

				images	=	tf.image.resize_bilinear(tf.expand_dims(image,	0),	[299,	299])

				#	Convert	the	pixels	to	the	range	-1,1	required	by	the	model

				images	=	tf.mul(tf.sub(images,	0.5),	2)

				return	images

def	inference(images):

			logits,	_	=	inception_model.inference(images,	1001)

			return	logits

In	the	code	above	we	define	the	placeholder	for	the	input.	We	call	a	function	to	convert
the	external	input	represented	in	the	placeholder	to	the	format	required	for	the	original
model	inference	method.	For	example	we	will	convert	from	the	JPEG	string	to	the	image
format	required	for	Inception.	Finally	we	call	the	original	model	inference	method	with
the	converted	input.



The	inference	method	requires	values	for	its	parameters.	We	will	recover	those	from	a
training	checkpoint.	As	you	may	recall	from	the	basics	chapter,	we	periodically	save
training	checkpoint	files	of	our	model.	Those	contain	the	learned	values	of	parameters	at
the	time,	so	in	case	of	disaster	we	don’t	lose	the	training	progress.

When	we	declare	the	training	complete,	the	last	saved	training	checkpoint	will	contain
the	most	updated	model	parameters,	which	are	the	ones	we	wish	to	put	in	production.

To	restore	the	checkpoint,	the	code	should	be:
saver	=	tf.train.Saver()

with	tf.Session()	as	sess:

				#	Restore	variables	from	training	checkpoints.

				ckpt	=	tf.train.get_checkpoint_state(sys.argv[1])

				if	ckpt	and	ckpt.model_checkpoint_path:

								saver.restore(sess,	sys.argv[1]	+	"/"	+	ckpt.model_checkpoint_path)

				else:

								print("Checkpoint	file	not	found")

								raise	SystemExit

For	the	Inception	model,	you	can	download	a	pretrained	checkpoint	from
http://download.tensorflow.org/models/image/imagenet/inception-v3-2016-03-01.tar.gz
#	on	the	docker	container

cd	/tmp

curl	-O	http://download.tensorflow.org/models/image/imagenet/inception-v3-2016-03-01.tar.gz

tar	-xzf	inception-v3-2016-03-01.tar.gz

Finally	we	export	the	model	using	the	tensorflow_serving.session_bundle.exporter.Exporter
class.	We	create	an	instance	of	it	passing	the	saver	instance.	Then	we	have	to	create	the
signature	of	the	model	using	the	exporter.classification_signature	method.	The	signature
specifies	which	is	the	input_tensor,	and	which	are	the	output	tensors.	The	output	is
composed	by	the	classes_tensor,	which	contains	the	list	of	output	class	names,	and	the
scores_tensor,	which	contains	the	score/probability	the	model	assigns	to	each	class.
Typically	in	a	model	with	a	high	number	of	classes,	you	would	configure	those	to	return
only	classes	selected	with	tf.nn.top_k.	Those	are	the	K	classes	with	the	highest	assigned
score	by	the	model.

The	last	step	is	to	apply	the	signature	calling	the	exporter.Exporter.init	method	and	run
the	export	with	the	export	method,	which	receives	an	output	path,	a	version	number	for	the
model	and	the	session.
				scores,	class_ids	=	tf.nn.top_k(y,	NUM_CLASSES_TO_RETURN)

				#	for	simplification	we	will	just	return	the	class	ids,	we	should	return	the	names	instead

				classes	=	tf.contrib.lookup.index_to_string(tf.to_int64(class_ids),

								mapping=tf.constant([str(i)	for	i	in	range(1001)]))

				model_exporter	=	exporter.Exporter(saver)

				signature	=	exporter.classification_signature(

								input_tensor=external_x,	classes_tensor=classes,	scores_tensor=scores)

				model_exporter.init(default_graph_signature=signature,	init_op=tf.initialize_all_tables())

				model_exporter.export(sys.argv[1]	+	"/export",	tf.constant(time.time()),	sess)

Because	of	dependencies	to	auto-generated	code	in	the	Exporter	class	code,	you	will
need	to	run	our	exporter	using	bazel,	inside	the	Docker	container.

To	do	so	we	will	save	our	code	as	export.py	inside	the	bazel	workspace	we	started	before.

http://download.tensorflow.org/models/image/imagenet/inception-v3-2016-03-01.tar.gz


Will	need	to	a	BUILD	file	with	a	rule	for	building	it	like:
#	BUILD	file

py_binary(

				name	=	"export",

				srcs	=	[

								"export.py",

				],

				deps	=	[

								"//tensorflow_serving/session_bundle:exporter",

								"@org_tensorflow//tensorflow:tensorflow_py",

								#	only	needed	for	inception	model	export

								"@inception_model//inception",

				],

)

We	can	then	run	the	exporter	from	between	the	container	with	the	command:
#	on	the	docker	container

cd	/mnt/home/serving_example

bazel	run	:export	/tmp/inception-v3

And	it	will	create	the	export	in	/tmp/inception-v3/{current_timestamp}/	based	on	the
checkpoint	that	should	be	extracted	in	/tmp/inception-v3.

Note	that	the	first	time	you	run	it	will	take	some	time,	because	it	must	compile
Tensorflow.



Defining	a	server	interface

The	next	step	is	to	create	a	server	for	the	exported	model.

Tensorflow	Serving	is	designed	to	work	with	gRPC,	a	binary	RPC	protocol	that	works
over	HTTP/2.	It	supports	a	variety	of	languages	for	creating	servers	and	auto-generating
client	stubs.	As	Tensorlow	works	over	C++,	we	will	need	to	define	our	server	in	it.
Luckily	the	server	code	will	be	short.

In	order	to	use	gRPC,	we	must	define	our	service	contract	in	a	protocol	buffer,	which	is
the	IDL	and	binary	encoding	used	for	gRPC.	So	lets	define	our	service.	As	we	mentioned
in	the	exporting	section,	we	want	our	service	to	have	a	method	that	inputs	a	JPEG	encoded
string	of	the	image	to	classify	and	returns	a	list	of	inferred	classes	with	their	corresponding
scores.

Such	a	service	should	be	defined	in	a	classification_service.proto	file	like:
syntax	=	"proto3";

message	ClassificationRequest	{

				//	JPEG	encoded	string	of	the	image.

				bytes	input	=	1;

};

message	ClassificationResponse	{

				repeated	ClassificationClass	classes	=	1;

};

message	ClassificationClass	{

				string	name	=	1;

				float	score	=	2;

}

service	ClassificationService	{

				rpc	classify(ClassificationRequest)	returns	(ClassificationResponse);

}

You	can	use	this	same	interface	definition	for	any	kind	of	service	that	receives	an
image,	or	an	audio	fragment,	or	a	piece	of	text.

For	using	an	structured	input	like	a	database	record,	just	change	the	ClassificationRequest
message.	For	example,	if	we	were	trying	to	build	the	classification	service	for	the	Iris
dataset:
message	ClassificationRequest	{

				float	petalWidth	=	1;

				float	petalHeight	=	2;

				float	sepalWidth	=	3;

				float	sepalHeight	=	4;

}

The	proto	file	will	be	converted	to	the	corresponding	classes	definitions	for	the	client
and	the	server	by	the	proto	compiler.	To	use	the	protobuf	compiler,	we	have	to	add	a	new
rule	to	the	BUILD	file	like:
load("@protobuf//:protobuf.bzl",	"cc_proto_library")

cc_proto_library(

				name="classification_service_proto",

				srcs=["classification_service.proto"],

				cc_libs	=	["@protobuf//:protobuf"],

				protoc="@protobuf//:protoc",



				default_runtime="@protobuf//:protobuf",

				use_grpc_plugin=1

)

Notice	the	load	at	the	top	of	the	code	fragment.	It	imports	the	cc_proto_library	rule
definition	from	the	externally	imported	protobuf	library.	Then	we	use	it	for	defining	a
build	to	our	proto	file.	Let’s	run	the	build	using	bazel	build	:classification_service_proto	and
check	the	resulting	bazel-genfiles/classification_service.grpc.pb.h:
...

class	ClassificationService	{

		...

		class	Service	:	public	::grpc::Service	{

					public:

						Service();

						virtual	~Service();

						virtual	::grpc::Status	classify(::grpc::ServerContext*	context,	const	::ClassificationRequest*

				};

ClassificationService::Service	is	the	interface	we	have	to	implement	with	the	inference
logic.	We	can	also	check	bazel-genfiles/classification_service.pb.h	for	the	definitions	of	the
request	and	response	messages:
...

class	ClassificationRequest	:	public	::google::protobuf::Message	{

				...

				const	::std::string&	input()	const;

				void	set_input(const	::std::string&	value);

				...

}

class	ClassificationResponse	:	public	::google::protobuf::Message	{

				...

				const	::ClassificationClass&	classes()	const;

				void	set_allocated_classes(::ClassificationClass*	classes);

				...

}

class	ClassificationClass	:	public	::google::protobuf::Message	{

				...

				const	::std::string&	name()	const;

				void	set_name(const	::std::string&	value);

				float	score()	const;

				void	set_score(float	value);

				...

}

You	can	see	how	the	proto	definition	became	a	C++	class	interface	for	each	type.	Their
implementations	are	autogenerated	too	so	we	can	just	use	them	right	away.



Implementing	an	inference	server

To	implement	ClassificationService::Service	we	will	need	to	load	our	model	export	and
call	inference	on	it.	We	do	that	by	the	means	of	a	SessionBundle,	an	object	that	we	create
from	the	export	and	contains	a	TF	session	with	the	fully	loaded	graph,	as	well	as	the
metadata	including	the	classification	signature	defined	on	the	export	tool.

To	create	a	SessionBundle	from	the	exported	file	path,	we	can	define	a	handy	function
that	handles	the	boilerplate:
#include	<iostream>

#include	<memory>

#include	<string>

#include	<grpc++/grpc++.h>

#include	"classification_service.grpc.pb.h"

#include	"tensorflow_serving/servables/tensorflow/session_bundle_factory.h"

using	namespace	std;

using	namespace	tensorflow::serving;

using	namespace	grpc;

unique_ptr<SessionBundle>	createSessionBundle(const	string&	pathToExportFiles)	{

	 SessionBundleConfig	session_bundle_config	=	SessionBundleConfig();

	 unique_ptr<SessionBundleFactory>	bundle_factory;

				SessionBundleFactory::Create(session_bundle_config,	&bundle_factory);

	 unique_ptr<SessionBundle>	sessionBundle;

	 bundle_factory->CreateSessionBundle(pathToExportFiles,	&sessionBundle);

	 return	sessionBundle;

}

In	the	code	we	use	a	SessionBundleFactory	to	create	the	SessionBundle	configured	to	load	the
model	exported	in	the	path	specified	by	pathToExportFiles.	It	returns	a	unique	pointer	to	the
instance	of	the	created	SessionBudle.

We	now	have	to	define	the	implementation	of	the	service,	ClassificationServiceImpl	that
will	receive	the	SessionBundle	as	parameter	to	be	used	to	do	the	inference.
class	ClassificationServiceImpl	final	:	public	ClassificationService::Service	{

		private:

	 unique_ptr<SessionBundle>	sessionBundle;

		public:

				ClassificationServiceImpl(unique_ptr<SessionBundle>	sessionBundle)	:

								sessionBundle(move(sessionBundle))	{};

				Status	classify(ServerContext*	context,	const	ClassificationRequest*	request,

																				ClassificationResponse*	response)	override	{

	 	 //	Load	classification	signature

	 	 ClassificationSignature	signature;

	 	 const	tensorflow::Status	signatureStatus	=

	 	 		GetClassificationSignature(sessionBundle->meta_graph_def,	&signature);

	 	 if	(!signatureStatus.ok())	{

	 	 	 return	Status(StatusCode::INTERNAL,	signatureStatus.error_message());

	 	 }

	 	 //	Transform	protobuf	input	to	inference	input	tensor.

	 	 tensorflow::Tensor	input(tensorflow::DT_STRING,	tensorflow::TensorShape());

	 	 input.scalar<string>()()	=	request->input();



	 	 vector<tensorflow::Tensor>	outputs;

	 	 //	Run	inference.

	 	 const	tensorflow::Status	inferenceStatus	=	sessionBundle->session->Run(

	 	 	 {{signature.input().tensor_name(),	input}},

	 	 	 {signature.classes().tensor_name(),	signature.scores().tensor_name()},

	 	 	 {},

	 	 	 &outputs);

	 	 if	(!inferenceStatus.ok())	{

	 	 	 return	Status(StatusCode::INTERNAL,	inferenceStatus.error_message());

	 	 }

	 	 //	Transform	inference	output	tensor	to	protobuf	output.

	 	 for	(int	i	=	0;	i	<	outputs[0].vec<string>().size();	++i)	{

	 	 	 ClassificationClass	*classificationClass	=	response->add_classes();

	 	 	 classificationClass->set_name(outputs[0].flat<string>()(i));

	 	 	 classificationClass->set_score(outputs[1].flat<float>()(i));

	 	 }

								return	Status::OK;

				}

};

The	implementation	of	the	classify	method	does	four	steps:

Loads	the	ClassificationSignature	stored	in	the	model	export	meta	by	using	the
GetClassificationSignature	function.	The	signature	specifies	the	name	of	the	input	tensor
where	to	set	the	received	image,	and	the	names	of	the	output	tensors	in	the	graph
where	to	obtain	the	inference	results	from.
Copies	the	JPEG	encoded	image	string	from	the	request	parameter	into	a	tensor	to	be
sent	to	inference.
Runs	inference.	It	obtains	the	TF	session	from	sessionBundle	and	runs	one	step	on	it,
passing	references	to	the	input	and	outputs	tensors.
Copies	and	formats	the	results	from	the	output	tensors	to	the	response	output	param	in
the	shape	specified	by	the	ClassificationResponse	message.

The	last	piece	of	code	is	the	boilerplate	to	setup	a	gRPC	Server	and	create	an	instance	of
our	ClassificationServiceImpl,	configured	with	the	SessionBundle.
int	main(int	argc,	char**	argv)	{

				if	(argc	<	3)	{

					 cerr	<<	"Usage:	server	<port>	/path/to/export/files"	<<	endl;

	 	 return	1;

				}

	 const	string	serverAddress(string("0.0.0.0:")	+	argv[1]);

	 const	string	pathToExportFiles(argv[2]);

	 unique_ptr<SessionBundle>	sessionBundle	=	createSessionBundle(pathToExportFiles);

	 ClassificationServiceImpl	classificationServiceImpl(move(sessionBundle));

				ServerBuilder	builder;

				builder.AddListeningPort(serverAddress,	grpc::InsecureServerCredentials());

				builder.RegisterService(&classificationServiceImpl);

				unique_ptr<Server>	server	=	builder.BuildAndStart();

				cout	<<	"Server	listening	on	"	<<	serverAddress	<<	endl;

				server->Wait();

				return	0;

}



To	compile	this	code	we	have	to	define	a	rule	in	our	BUILD	file	for	it
cc_binary(

				name	=	"server",

				srcs	=	[

								"server.cc",

								],

				deps	=	[

								":classification_service_proto",

								"@tf_serving//tensorflow_serving/servables/tensorflow:session_bundle_factory",

								"@grpc//:grpc++",

								],

)

With	this	code	we	can	run	the	inference	server	from	the	container	with	bazel	run	:server
9999	/tmp/inception-v3/export/{timestamp}.



The	client	app

As	gRPC	works	over	HTTP/2,	it	may	allow	in	the	future	to	call	gRPC	based	services
directly	from	the	browser.	But	until	the	manistream	of	browsers	support	the	required
HTTP/2	features	and	Google	releases	a	browser	side	Javascript	gRPC	client,	accessing	our
inference	service	from	a	webapp	should	be	done	through	a	server	side	component.

We	are	going	to	do	then	a	really	simple	Python	web	server	based	on	BaseHTTPServer	that
will	handle	the	image	file	upload	and	send	for	processing	to	inference,	returning	the
inference	result	in	plain	text.

Our	server	will	respond	GET	requests	with	a	simple	form	for	sending	the	image	to
classify.	The	code	for	it:
from	BaseHTTPServer	import	HTTPServer,	BaseHTTPRequestHandler

import	cgi

import	classification_service_pb2

from	grpc.beta	import	implementations

class	ClientApp(BaseHTTPRequestHandler):

				def	do_GET(self):

								self.respond_form()

				def	respond_form(self,	response=""):

								form	=	"""

								<html><body>

								<h1>Image	classification	service</h1>

								<form	enctype="multipart/form-data"	method="post">

								<div>Image:	<input	type="file"	name="file"	accept="image/jpeg"></div>

								<div><input	type="submit"	value="Upload"></div>

								</form>

								%s

								</body></html>

								"""

								response	=	form	%	response

								self.send_response(200)

								self.send_header("Content-type",	"text/html")

								self.send_header("Content-length",	len(response))

								self.end_headers()

								self.wfile.write(response)

To	call	inference	from	our	webapp	server,	we	need	the	corresponding	Python	protocol
buffer	client	for	the	ClassificationService.	To	generate	it	we	will	need	to	run	the	protocol
buffer	compiler	for	Python:
pip	install	grpcio	cython	grpcio-tools

python	-m	grpc.tools.protoc	-I.	--python_out=.	--grpc_python_out=.	classification_service.proto

It	will	generate	the	classification_service_pb2.py	file	that	contains	the	stub	for	calling	the
service.

On	POST	the	server	will	parse	the	sent	form	and	create	a	ClassificationRequest	with	it.
Then	setup	a	channel	to	the	classification	server	and	submit	the	request	to	it.	Finally,	it	will
render	the	classification	response	as	HTML	and	send	it	back	to	the	user.
				def	do_POST(self):

								form	=	cgi.FieldStorage(

												fp=self.rfile,



												headers=self.headers,

												environ={

																'REQUEST_METHOD':	'POST',

																'CONTENT_TYPE':	self.headers['Content-Type'],

												})

								request	=	classification_service_pb2.ClassificationRequest()

								request.input	=	form['file'].file.read()

								channel	=	implementations.insecure_channel("127.0.0.1",	9999)

								stub	=	classification_service_pb2.beta_create_ClassificationService_stub(channel)

								response	=	stub.classify(request,	10)	#	10	secs	timeout

								self.respond_form("<div>Response:	%s</div>"	%	response)

To	run	the	server	we	can	python	client.py	from	outside	the	container.	Then	we	navigate
with	a	browser	to	http://localhost:8080	to	access	its	UI.	Go	ahead	and	upload	an	image	to
try	inference	working	on	it.

http://localhost:8080


Preparing	for	production

To	close	the	chapter	we	will	learn	how	to	put	our	classification	server	in	production.

We	start	by	copying	the	compiled	server	files	to	a	permanent	location	inside	the
container,	and	cleaning	up	all	the	temporary	build	files:
#	inside	the	container

mkdir	/opt/classification_server

cd	/mnt/home/serving_example

cp	-R	bazel-bin/.	/opt/classification_server

bazel	clean

Now,	outside	the	container	we	have	to	commit	its	state	into	a	new	Docker	image.	That
basically	means	creating	a	snapshot	of	the	changes	in	its	virtual	file	system.
#	outside	the	container

docker	ps

#	grab	container	id	from	above

docker	commit	<container	id>

That’s	it.	Now	we	can	push	the	image	to	our	favorite	docker	serving	cloud	and	start
serving	it.



Conclusion

In	this	chapter	we	learned	how	to	adapt	our	models	for	serving,	exporting	them	and
building	fast	lightweight	servers	that	run	them.	We	also	learned	how	to	create	simple	web
apps	for	consuming	them	giving	the	full	toolset	for	consuming	Tensorflow	models	from
other	apps.

In	the	next	chapter	we	provide	code	snippets	and	explanations	for	some	of	the	helper
functions	and	classes	used	throughout	this	book.





Chapter	8.	Helper	Functions,	Code
Structure,	and	Classes
In	this	short	chapter,	we	provide	code	snippets	and	explanations	for	various	helper

functions	and	classes	used	throughout	this	book.



Ensure	a	directory	structure

Let’s	start	with	a	little	prerequisite	that	we	need	when	interacting	with	the	file	system.
Basically,	every	time	we	create	files,	we	have	to	ensure	that	the	parent	directory	already
exists.	Neither	our	operating	system	nor	Python	does	this	for	us	automatically,	so	we	use
this	function	that	correctly	handles	the	case	that	some	or	all	of	the	directories	along	the
path	might	already	exist.
import	errno

import	os

def	ensure_directory(directory):

				"""

				Create	the	directories	along	the	provided	directory	path	that	do	not	exist.

				"""

				directory	=	os.path.expanduser(directory)

				try:

								os.makedirs(directory)

				except	OSError	as	e:

								if	e.errno	!=	errno.EEXIST:

												raise	e



Download	function

We	download	several	datasets	throughout	the	book.	In	all	cases,	there	is	shared	logic
and	it	makes	sense	to	extract	that	into	a	function.	First,	we	determine	the	filename	from
the	URL	if	not	specified.	Then,	we	use	the	function	defined	above	to	ensure	that	the
directory	path	of	the	download	location	exists.
import	shutil

from	urllib.request	import	urlopen

def	download(url,	directory,	filename=None):

				"""

				Download	a	file	and	return	its	filename	on	the	local	file	system.	If	the

				file	is	already	there,	it	will	not	be	downloaded	again.	The	filename	is

				derived	from	the	url	if	not	provided.	Return	the	filepath.

				"""

				if	not	filename:

								_,	filename	=	os.path.split(url)

				directory	=	os.path.expanduser(directory)

				ensure_directory(directory)

				filepath	=	os.path.join(directory,	filename)

				if	os.path.isfile(filepath):

								return	filepath

				print('Download',	filepath)

				with	urlopen(url)	as	response,	open(filepath,	'wb')	as	file_:

								shutil.copyfileobj(response,	file_)

				return	filepath

Before	starting	the	actual	download,	check	if	there	is	already	a	file	with	the	target	name
in	the	download	location.	If	so,	skip	the	download	since	we	do	not	want	to	repeat	large
downloads	unnecessarily.	Finally,	we	download	the	file	and	return	its	path.	In	case	you
need	to	repeat	a	download,	just	delete	the	corresponding	file	on	the	file	system.



Disk	caching	decorator

In	data	science	and	machine	learning,	we	handle	large	datasets	that	we	don’t	want	to
preprocess	again	every	time	we	make	changes	to	our	model.	Thus,	we	want	to	store
intermediate	stages	of	the	data	processing	in	a	common	place	on	disk.	That	way,	we	can
check	if	the	file	already	exists	later.

In	this	section	we	will	introduce	a	function	decorator	that	takes	care	of	the	caching	and
loading.	It	uses	Python’s	pickle	functionality	to	serialize	and	deserialize	any	return	values
of	the	decorated	function.	However,	this	also	means	it	only	works	for	dataests	fitting	into
main	memory.	For	larger	dataests,	you	probably	want	to	take	a	look	at	scientific	dataset
formats	like	HDF5.

We	can	now	use	this	to	write	the	@disk_cache	decorator.	It	forwards	function	arguments	to
the	decorated	function.	The	function	arguments	are	also	used	to	determine	whether	a
cached	result	exists	for	this	combination	of	arguments.	For	this,	they	get	hashed	into	a
single	number	that	we	prepend	to	the	filename.
import	functools

import	os

import	pickle

def	disk_cache(basename,	directory,	method=False):

				"""

				Function	decorator	for	caching	pickleable	return	values	on	disk.	Uses	a

				hash	computed	from	the	function	arguments	for	invalidation.	If	'method',

				skip	the	first	argument,	usually	being	self	or	cls.	The	cache	filepath	is

				'directory/basename-hash.pickle'.

				"""

				directory	=	os.path.expanduser(directory)

				ensure_directory(directory)

				def	wrapper(func):

								@functools.wraps(func)

								def	wrapped(*args,	**kwargs):

												key	=	(tuple(args),	tuple(kwargs.items()))

												#	Don't	use	self	or	cls	for	the	invalidation	hash.

												if	method	and	key:

																key	=	key[1:]

												filename	=	'{}-{}.pickle'.format(basename,	hash(key))

												filepath	=	os.path.join(directory,	filename)

												if	os.path.isfile(filepath):

																with	open(filepath,	'rb')	as	handle:

																				return	pickle.load(handle)

												result	=	func(*args,	**kwargs)

												with	open(filepath,	'wb')	as	handle:

																pickle.dump(result,	handle)

												return	result

								return	wrapped

				return	wrapper

Here	is	an	example	usage	of	the	disk	cache	decorator	to	save	the	data	processing
pipeline.
@disk_cache('dataset',	'/home/user/dataset/')

def	get_dataset(one_hot=True):

				dataset	=	Dataset('http://example.com/dataset.bz2')

				dataset	=	Tokenize(dataset)

				if	one_hot:

								dataset	=	OneHotEncoding(dataset)

				return	dataset



For	methods,	there	is	a	method=False	argument	that	tells	the	decorator	whether	to	ignore
the	first	argument	or	not.	In	methods	and	class	methods,	the	first	argument	is	the	object
instance	self	that	is	different	for	every	program	run	and	thus	shouldn’t	determine	if	there	is
a	cache	available.	For	static	methods	and	functions	outside	of	classes,	this	should	be	False.



Attribute	Dictionary

This	simple	class	just	provides	some	convenince	when	working	with	configuration
objects.	While	you	could	perfectly	well	store	your	configurations	in	Python	dictionaries,	it
is	a	bit	verbose	to	access	their	elements	using	the	config['key']	syntax.
class	AttrDict(dict):

				def	__getattr__(self,	key):

								if	key	not	in	self:

												raise	AttributeError

								return	self[key]

				def	__setattr__(self,	key,	value):

								if	key	not	in	self:

												raise	AttributeError

								self[key]	=	value

This	class,	inheriting	from	the	built-in	dict,	allows	to	access	and	change	existing	elemets
using	the	attribute	syntax:	config.key	and	config.key	=	value.	You	can	create	attribute
dictionaries	by	either	passing	in	a	standard	dictionary,	passing	in	entries	keyword
arguments,	or	using	**locals().
parmas	=	AttrDict({

				'key':	value,

})

params	=	AttrDict(

				key=value,

)

def	get_params():

				key	=	value

				return	AttrDict(**locals())

The	locals()	built-in	just	returns	a	mapping	from	all	local	variable	names	in	the	scope	to
their	values.	While	some	people	who	are	not	that	familiar	with	Python	might	argue	that
there	too	much	magic	going	on	here,	this	technique	also	provides	some	benefits.	Mainly,
we	can	have	configuration	entries	that	rely	on	ealier	entries.
def	get_params():

				learning_rate	=	0.003

				optimizer	=	tf.train.AdamOptimizer(learning_rate)

				return	AttrDict(**locals())

This	function	returns	an	attribute	dictionary	containing	both	the	learning_rate	and	the
optimizer.	This	would	not	be	possible	within	the	declaration	of	a	dictionary.	As	always,	just
find	a	way	that	works	for	you	(and	your	colleagues)	and	use	that.



Lazy	property	decorator

As	you	learned,	our	TensorFlow	code	defines	a	compute	graph	rather	than	performing
actual	computations.	If	we	want	to	structure	our	models	in	classes,	we	cannot	directly
expose	its	outputs	from	functions	or	properties,	since	this	would	add	new	operations	to	the
graph	every	time.	Let’s	see	an	example	where	this	becomes	a	problem:
class	Model:

				def	__init__(self,	data,	target):

								self.data	=	data

								self.target	=	target

				@property

				def	prediction(self):

								data_size	=	int(self.data.get_shape()[1])

								target_size	=	int(self.target.get_shape()[1])

								weight	=	tf.Variable(tf.truncated_normal([data_size,	target_size]))

								bias	=	tf.Variable(tf.constant(0.1,	shape=[target_size]))

								incoming	=	tf.matmul(self.data,	weight)	+	bias

								prediction	=	tf.nn.softmax(incoming)

								rediction

				@property

				def	optimize(self):

								cross_entropy	=	-tf.reduce_sum(self.target,	tf.log(self.prediction))

								optimizer	=	tf.train.RMSPropOptimizer(0.03)

								optimize	=	optimizer.minimize(cross_entropy)

								return	optimize

				@property

				def	error(self):

								mistakes	=	tf.not_equal(

												tf.argmax(self.target,	1),	tf.argmax(self.prediction,	1))

								error	=	tf.reduce_mean(tf.cast(mistakes,	tf.float32))

								return	error

Using	an	instance	of	this	from	the	outside	creates	a	new	computation	path	in	the	graph
when	we	access	model.optimize,	for	example.	Moreover,	this	internally	calls	model.prediction
creating	new	weights	and	biases.	To	address	this	design	problem,	we	introduce	the
following	@lazy_property	decorator.
import	functools

def	lazy_property(function):

				attribute	=	'_lazy_'	+	function.__name__

				@property

				@functools.wraps(function)

				def	wrapper(self):

								if	not	hasattr(self,	attribute):

												setattr(self,	attribute,	function(self))

								return	getattr(self,	attribute)

				return	wrapper

The	idea	is	to	define	a	property	that	is	only	evaluated	once.	The	result	is	stored	in	a
member	called	like	the	function	with	some	prefix,	for	example	_lazy_	here.	Subsequent
calls	to	the	property	name	then	return	the	existing	node	of	of	the	graph.	We	can	now	write
the	above	model	like	this:
class	Model:

				def	__init__(self,	data,	target):

								self.data	=	data

								self.target	=	target

								self.prediction



								self.optimize

								self.error

				@lazy_property

				def	prediction(self):

								data_size	=	int(self.data.get_shape()[1])

								target_size	=	int(self.target.get_shape()[1])

								weight	=	tf.Variable(tf.truncated_normal([data_size,	target_size]))

								bias	=	tf.Variable(tf.constant(0.1,	shape=[target_size]))

								incoming	=	tf.matmul(self.data,	weight)	+	bias

								return	tf.nn.softmax(incoming)

				@lazy_property

				def	optimize(self):

								cross_entropy	=	-tf.reduce_sum(self.target,	tf.log(self.prediction))

								optimizer	=	tf.train.RMSPropOptimizer(0.03)

								return	optimizer.minimize(cross_entropy)

				@lazy_property

				def	error(self):

								mistakes	=	tf.not_equal(

												tf.argmax(self.target,	1),	tf.argmax(self.prediction,	1))

								return	tf.reduce_mean(tf.cast(mistakes,	tf.float32))

Lazy	properties	are	a	nice	tool	to	structure	TensorFlow	models	and	decompose	them
into	classes.	It	is	useful	for	both	node	that	are	needed	from	the	outside	and	to	break	up
internal	parts	of	the	computation.



Overwrite	Graph	Decorator

This	function	decorator	is	very	useful	when	you	use	TensorFlow	in	an	interactive	way,
for	example	a	Jupyter	notebook.	Normally,	TensorFlow	has	a	default	graph	that	it	uses
when	you	don’t	explicitly	tell	it	to	use	something	else.	However,	in	a	Jupyter	notebook	the
interpreter	state	is	kept	between	runs	of	a	cell.	Thus,	the	initial	default	graph	is	still
around.

Excecuting	a	cell	that	defines	graph	operations	again	will	try	to	add	them	to	the	graph
they	are	already	in.	Fortunately,	TensorFlow	throws	an	error	in	this	case.	A	simple
workaround	is	to	restart	the	kernel	and	run	all	cells	again.

However,	there	is	a	better	way	to	do	it.	Just	create	a	custom	graph	and	set	it	as	default.
All	operations	will	be	added	to	that	graph	and	if	you	run	the	cell	again,	a	new	graph	will
be	created.	The	old	graph	is	automatically	cleaned	up	since	there	is	no	reference	to	it
anymore.
def	main():

				#	Define	your	placeholders,	model,	etc.

				data	=	tf.placeholder(...)

				target	=	tf.placeholder(...)

				model	=	Model()

with	tf.Graph().as_default():

				main()

Even	more	conveniently,	put	the	graph	creation	in	in	a	decorator	like	this	and	decorate
your	main	function	with	it.	This	main	function	should	define	the	whole	graph,	for	example
defined	the	placeholders	and	calling	another	function	to	create	the	model.
import	functools

import	tensorflow	as	tf

def	overwrite_graph(function):

				@functools.wraps(function)

				def	wrapper(*args,	**kwargs):

								with	tf.Graph().as_default():

												return	function(*args,	**kwargs)

				return	wrapper

This	makes	the	example	above	a	bit	easier:
@overwrite_graph

def	main():

				#	Define	your	placeholders,	model,	etc.

				data	=	tf.placeholder(...)

				target	=	tf.placeholder(...)

				model	=	Model()

main()

This	is	the	end	of	the	chapter,	but	take	a	look	at	the	next	chapter	to	read	our	wrapup	of
the	book.





Chapter	9.	Conclusion
You	made	it!	Thank	for	you	reading	TensorFlow	for	Machine	Intelligence.	You	should

now	have	a	firm	understanding	of	the	core	mechanics	and	API	for	building	machine
learning	models	in	TensorFlow.	If	you	weren’t	already	knowledgable	about	deep	learning,
we	hope	that	you’ve	gained	more	insight	and	comfort	with	some	of	the	most	common
architectures	in	convolutional	and	recurrent	neural	networks.	You’ve	also	seen	how	simple
it	can	be	to	put	a	trained	model	into	a	production	setting	and	start	adding	the	power	of
TensorFlow	to	your	own	applications.

TensorFlow	has	the	capabilities	to	change	the	way	researchers	and	businesses	approach
machine	learning.	With	the	skills	learned	in	this	book,	be	confident	in	your	ability	to	build,
test,	and	implement	existing	models	as	well	as	your	own	newly	designed	experimental
networks.	Now	that	you	are	comfortable	with	the	essentials,	don’t	be	afraid	to	play	around
with	what’s	possible	in	TensorFlow.	You	now	bring	a	new	edge	with	you	in	any	discussion
about	creating	machine	learning	solutions.



Next	steps	and	additional	resources

Although	we’ve	covered	much	in	this	book,	there	are	still	subjects	that	simply	couldn’t
fit	within	these	pages.	Because	of	this,	we’ve	included	a	few	directions	to	help	get	you
started	diving	deeper	into	TensorFlow.



Read	the	docs
To	a	developer	who	hasn’t	worked	with	TensorFlow	before,	the	API	documentation

may	be	a	little	challenging	to	read	due	to	specific	terminology	used	in	TensorFlow.
However,	now	that	you’re	chops	are	up	to	snuff,	you’ll	find	the	API	to	be	invaluable	as
you	craft	and	code	your	programs.	Keep	it	open	in	the	background	or	a	separate	monitor
and	you	won’t	regret	it:

https://www.tensorflow.org/versions/master/api_docs/index.html

https://www.tensorflow.org/versions/master/api_docs/index.html


Stay	Updated
The	absolute	best	way	to	keep	up-to-date	with	the	latest	functionality	and	features	of

TensorFlow	is	the	official	TensorFlow	Git	repository	on	GitHub.	By	reading	pull	requests,
issues,	and	release	notes,	you’ll	know	ahead	of	time	what	will	be	included	in	upcoming
releases,	and	you’ll	even	get	a	sense	of	when	new	releases	are	planned.

https://github.com/tensorflow/tensorflow

https://github.com/tensorflow/tensorflow


Distributed	TensorFlow
Although	the	basic	concepts	of	running	TensorFlow	in	a	distributed	setting	are

relatively	simple,	the	details	of	setting	up	a	cluster	to	efficiently	train	a	TensorFlow	model
could	be	its	own	book.	The	first	place	you	should	look	to	get	started	with	distributed
TensorFlow	is	the	official	how-to	on	the	tensorflow.org	website:

https://www.tensorflow.org/versions/master/how_tos/distributed/index.html

Note	that	we	expect	many	new	features	to	be	released	in	the	near	future	that	will	make
distributed	TensorFlow	much	simpler	and	more	flexible-	especially	with	regards	to	using
cluster	management	software,	such	as	Kubernetes.

https://www.tensorflow.org/versions/master/how_tos/distributed/index.html


Building	New	TensorFlow	Functionality
If	you	want	to	get	under	the	hood	with	TensorFlow	and	start	learning	how	to	create	your

own	Operations,	we	highly	recommend	the	official	how-to	on	tensorflow.org:

https://www.tensorflow.org/versions/master/how_tos/adding_an_op/index.html

The	process	of	building	an	Operation	from	scratch	is	the	best	way	to	start	getting
acquainted	with	how	the	TensorFlow	framework	is	designed.	Why	wait	for	a	new	feature
when	you	could	build	it	yourself!

https://www.tensorflow.org/versions/master/how_tos/adding_an_op/index.html


Get	involved	with	the	community
The	TensorFlow	community	is	active	and	thriving.	Now	that	you	know	the	software,	we

highly	encourage	you	to	join	the	conversation	and	help	make	the	community	even	better!
In	addition	to	the	GitHub	repository,	the	official	mailing	list	and	Stack	Overflow	questions
provide	two	additional	sources	of	community	engagement.

The	TensorFlow	mailing	list	is	designed	for	general	discussion	related	to	features,
design	thoughts,	and	the	future	of	TensorFlow:

https://groups.google.com/a/tensorflow.org/d/forum/discuss

Note	that	the	mailing	list	is	not	the	place	to	ask	for	help	on	your	own	projects!	For
specific	questions	on	debugging,	best	practices,	the	API,	or	anything	specific,	check	out
Stack	Overflow	to	see	if	your	question	has	already	been	answered-	if	not,	ask	it	yourself!

http://stackoverflow.com/questions/tagged/tensorflow

https://groups.google.com/a/tensorflow.org/d/forum/discuss
http://stackoverflow.com/questions/tagged/tensorflow


Code	from	this	book
Code	examples	from	the	text	and	additional	materials	can	be	found	in	this	book’s

GitHub	Repository:

https://github.com/backstopmedia/tensorflowbook

Thank	you	once	again	for	reading!

https://github.com/backstopmedia/tensorflowbook
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