打开微信,使用扫一扫进入页面后,点击右上角菜单,
点击“发送给朋友”或“分享到朋友圈”完成分享
MLU270;
操作系统:UBUNTU;
驱动版本:4.8.0;
AI框架:Pytorch;
调试的是pytorch提供compressai公开框架(https://github.com/InterDigitalInc/CompressAI/tree/f63754c32724c7ee4e7f523729fe387a5c9f86c6),使用压缩算法为:mbt2018_mean,目前cpu调试成功,量化模型也跑通了,但是在逐层在线跑的时候,出现如下错误:(目前对firstconv False 和 True都试过了,都会出现这样的问题)
[DEBUG][/pytorch/catch/torch_mlu/csrc/aten/operators/cnml_ops.cpp][line:194][conv2d_first][thread:139902670112576][process:10560]: input[shape: [1, 3, 512, 768], device: mlu:0, dtype: Float] weight[shape: [128, 3, 5, 5], device: mlu:0, dtype: Float] bias[shape: [128], device: mlu:0, dtype: Float] padding[value: 2] [value: 2] stride[value: 2] [value: 2] dilation[value: 1] [value: 1] groups[value: 1] q_scale[shape: [2], device: mlu:0, dtype: Float] q_mode[shape: [1], device: mlu:0, dtype: Int] mean[shape: [3], device: mlu:0, dtype: Float] std[shape: [3], device: mlu:0, dtype: Float]
[DEBUG][/pytorch/catch/torch_mlu/csrc/aten/operators/cnml_ops.cpp][line:398][max][thread:139902670112576][process:10560]: self[shape: [128], device: mlu:0, dtype: Float] other[shape: [1], device: mlu:0, dtype: Float]
[ERROR][/pytorch/catch/torch_mlu/csrc/aten/operators/cnml/internal/maximum_internal.cpp][line:11][cnml_maximum_internal][thread:139902670112576][process:10560]:
Shape of input should match shape of other
[WARNING][/pytorch/catch/torch_mlu/csrc/aten/operators/op_methods.cpp][line:1386][max][thread:139902670112576][process:10560]:
max Op cannot run on MLU device, start running on CPU!
[DEBUG][/pytorch/catch/torch_mlu/csrc/aten/operators/cnml_ops.cpp][line:226][copy_][thread:139902670112576][process:10560]: self[shape: [128], device: cpu, dtype: Float] src[shape: [128], device: mlu:0, dtype: Float] non_blocking[false]
[DEBUG][/pytorch/catch/torch_mlu/csrc/aten/operators/cnml_ops.cpp][line:226][copy_][thread:139902670112576][process:10560]: self[shape: [1], device: cpu, dtype: Float] src[shape: [1], device: mlu:0, dtype: Float] non_blocking[false]
[DEBUG][/pytorch/catch/torch_mlu/csrc/aten/operators/cnml_ops.cpp][line:226][copy_][thread:139902670112576][process:10560]: self[shape: [128], device: mlu:0, dtype: Float] src[shape: [128], device: cpu, dtype: Float] non_blocking[false]
[DEBUG][/pytorch/catch/torch_mlu/csrc/aten/operators/cnml_ops.cpp][line:506][pow][thread:139902670112576][process:10560]: self[shape: [128], device: mlu:0, dtype: Float] exponent[value: 2]
[DEBUG][/pytorch/catch/torch_mlu/csrc/aten/operators/cnml_ops.cpp][line:690][sub][thread:139902670112576][process:10560]: self[shape: [128], device: mlu:0, dtype: Float] other[shape: [1], device: mlu:0, dtype: Float] alpha[value: 1]
[DEBUG][/pytorch/catch/torch_mlu/csrc/aten/operators/cnml_ops.cpp][line:398][max][thread:139902670112576][process:10560]: self[shape: [128, 128], device: mlu:0, dtype: Float] other[shape: [1], device: mlu:0, dtype: Float]
[ERROR][/pytorch/catch/torch_mlu/csrc/aten/operators/cnml/internal/maximum_internal.cpp][line:11][cnml_maximum_internal][thread:139902670112576][process:10560]:
Shape of input should match shape of other
[WARNING][/pytorch/catch/torch_mlu/csrc/aten/operators/op_methods.cpp][line:1386][max][thread:139902670112576][process:10560]:
max Op cannot run on MLU device, start running on CPU!
[DEBUG][/pytorch/catch/torch_mlu/csrc/aten/operators/cnml_ops.cpp][line:226][copy_][thread:139902670112576][process:10560]: self[shape: [128, 128], device: cpu, dtype: Float] src[shape: [128, 128], device: mlu:0, dtype: Float] non_blocking[false]
[DEBUG][/pytorch/catch/torch_mlu/csrc/aten/operators/cnml_ops.cpp][line:226][copy_][thread:139902670112576][process:10560]: self[shape: [1], device: cpu, dtype: Float] src[shape: [1], device: mlu:0, dtype: Float] non_blocking[false]
[DEBUG][/pytorch/catch/torch_mlu/csrc/aten/operators/cnml_ops.cpp][line:226][copy_][thread:139902670112576][process:10560]: self[shape: [128, 128], device: mlu:0, dtype: Float] src[shape: [128, 128], device: cpu, dtype: Float] non_blocking[false]
[DEBUG][/pytorch/catch/torch_mlu/csrc/aten/operators/cnml_ops.cpp][line:506][pow][thread:139902670112576][process:10560]: self[shape: [128, 128], device: mlu:0, dtype: Float] exponent[value: 2]
[DEBUG][/pytorch/catch/torch_mlu/csrc/aten/operators/cnml_ops.cpp][line:690][sub][thread:139902670112576][process:10560]: self[shape: [128, 128], device: mlu:0, dtype: Float] other[shape: [1], device: mlu:0, dtype: Float] alpha[value: 1]
[DEBUG][/pytorch/catch/torch_mlu/csrc/aten/operators/cnml_ops.cpp][line:750][view][thread:139902670112576][process:10560]: self[shape: [128, 128], device: mlu:0, dtype: Float] size[value: [128, 128, 1, 1]]
beta.shape
torch.Size([128])
gamma.shape
torch.Size([128, 128, 1, 1])
x.shape
torch.Size([1, 128, 256, 384])
[DEBUG][/pytorch/catch/torch_mlu/csrc/aten/operators/cnml_ops.cpp][line:506][pow][thread:139902670112576][process:10560]: self[shape: [1, 128, 256, 384], device: mlu:0, dtype: Float] exponent[value: 2]
[WARNING][/pytorch/catch/torch_mlu/csrc/aten/operators/op_methods.cpp][line:3256][convolution_overrideable][thread:139902670112576][process:10560]:
convolution_overrideable Op cannot run on MLU device, start running on CPU!
Traceback (most recent call last):
File "test_online.py", line 332, in <module>
test_mlu_mode(args)
File "test_online.py", line 171, in test_m
lu_mode
out_net = net.forward(img.to(ct.mlu_device())) if (args.mmode != "CPU") else net.forward(img)
File "/torch/compressai/compressai/models/google.py", line 356, in forward
y = self.g_a(x)
File "/torch/venv3/pytorch/lib/python3.6/site-packages/torch/nn/modules/module.py", line 541, in __call__
result = self.forward(*input, **kwargs)
File "/torch/venv3/pytorch/lib/python3.6/site-packages/torch/nn/modules/container.py", line 92, in forward
input = module(input)
File "/torch/venv3/pytorch/lib/python3.6/site-packages/torch/nn/modules/module.py", line 541, in __call__
result = self.forward(*input, **kwargs)
File "/torch/compressai/compressai/ s/gdn.py", line 91, in forward
norm = F.conv2d(torch.pow(x,2), gamma, beta)
RuntimeError: To do for CPU
之前想打印
net.to(ct.mlu_device())
发现会出错,这个我不确定是不是本身就是动态的不能打印,打印的时候会出现shape出错的log。
测试的模型文件和在线测试脚本我都放在附件里。
热门帖子
精华帖子