打开微信,使用扫一扫进入页面后,点击右上角菜单,
点击“发送给朋友”或“分享到朋友圈”完成分享
yolov5s模型在batchsize=4的条件下对一张图片进行离线推理时没有输出结果,但是batchsize=1时结果正常,离线推理采用部分代码如下
for (int i = 0; i < inputNum; i++)
{
CNRT_CHECK(cnrtMalloc(&inputMluPtrS[i],inputSizeS[i])); //分配MLU上内存
inputCpuPtrS[i] = (void *)malloc(inputSizeS[i]); //分配CPU上的内存
//printf("%d\n", inputSizeS[i]);
//获取输入的维度信息 NHWC
CNRT_CHECK(cnrtGetInputDataShape(&dimValues,&dimNum,i,function));
printf("input shape:\n");
for(int y=0;y<dimNum;y++)
{
printf("%d ",dimValues[y]);
}
printf("\n");
input_width=dimValues[2];
input_height=dimValues[1];
batch_size=dimValues[0];
free(dimValues);
}
//为输出节点 分配CPU/MLU内存
for (int i = 0; i < outputNum; i++) {
CNRT_CHECK(cnrtMalloc(&outputMluPtrS[i],outputSizeS[i])); //分配MLU上内存
outputCpuPtrS[i] = (void *)malloc(outputSizeS[i]); //分配CPU上的内存
//printf("%d\n", outputSizeS[i]);
//获取输出的维度信息 NHWC
CNRT_CHECK(cnrtGetOutputDataShape(&dimValues,&dimNum,i,function));
int count=1;
printf("output shape:\n");
for(int y=0;y<dimNum;y++)
{
printf("%d ",dimValues[y]);
count=count*dimValues[y];
}
printf("\n");
outputCpuNchwPtrS[i] = (void *)malloc(count*sizeof(float)); //将输出转为float32类型,方便用户后处理
output_count.push_back(count);
free(dimValues);
}
//配置MLU输入/输出 地址的指针
param = (void **)malloc(sizeof(void *) * (inputNum + outputNum));
for (int i = 0; i < inputNum; i++) {
param[i] = inputMluPtrS[i];
}
for (int i = 0; i < outputNum; i++) {
param[i + inputNum] = outputMluPtrS[i];
}
//设置输入/输出的节点 索引
int input_idx=0;
int output_idx=0;
vector<cv::Mat> imgs;
vector<string> img_names;
unsigned char *ptr=(unsigned char *)inputCpuPtrS[input_idx];
for(int i=0;i<batch_size;i++)
{
// 选项 2 是yolov5的数据预处理方式
img_names.push_back(image_path);
cv::Mat input_image=cv::imread(image_path);
imgs.push_back(input_image);
cv::Mat input_image_resized;
cv::resize(input_image,input_image_resized,cv::Size(input_width,input_height));
if(is_rgb==1)
{
cv::Mat net_input_data_rgba(input_height,input_width,CV_8UC4,ptr);
cv::cvtColor(input_image_resized, net_input_data_rgba, CV_BGR2RGBA);
ptr+=(input_height*input_width*4);
} else if(is_rgb==0) {
cv::Mat net_input_data_rgba(input_height,input_width,CV_8UC4,ptr);
cv::cvtColor(input_image_resized, net_input_data_rgba, CV_BGR2BGRA);
ptr+=(input_height*input_width*4);
} else if(is_rgb==2) {
cv::Mat sample_temp;
float img_w = input_image.cols;
float img_h = input_image.rows;
cv::Mat sample_temp_bgr(input_image.cols, input_image.rows, CV_32FC3);
float img_scale = img_w < img_h ? (input_height / img_h) : (input_width / img_w);
int new_w = std::floor(img_w * img_scale);
int new_h = std::floor(img_h * img_scale);
cv::cvtColor(input_image, sample_temp_bgr, CV_BGR2RGB);
cv::resize(sample_temp_bgr, sample_temp, cv::Size(new_w, new_h), CV_INTER_LINEAR);
cv::Mat net_input_data_rgba(input_height,input_width,CV_32FC3,ptr);
sample_temp.copyTo(net_input_data_rgba(
cv::Range((static_cast<float>(input_height) - new_h) / 2,
(static_cast<float>(input_height) - new_h) / 2 + new_h),
cv::Range((static_cast<float>(input_width) - new_w) / 2,
(static_cast<float>(input_width) - new_w) / 2 + new_w)));
net_input_data_rgba /= 255.0;
ptr+=(input_height*input_width*4);
}
}
auto t0=GetTickCount();
//拷贝输入数据到MLU内存
CNRT_CHECK(cnrtMemcpy(inputMluPtrS[input_idx],inputCpuPtrS[input_idx],inputSizeS[input_idx],CNRT_MEM_TRANS_DIR_HOST2DEV));
//创建事件
cnrtNotifier_t notifier_start; //用来记录硬件时间
cnrtNotifier_t notifier_end;
CNRT_CHECK(cnrtRuntimeContextCreateNotifier(ctx,¬ifier_start));
CNRT_CHECK(cnrtRuntimeContextCreateNotifier(ctx,¬ifier_end));
CNRT_CHECK(cnrtPlaceNotifier(notifier_start, queue));
//设置invoke的参数
unsigned int affinity=1<<dev_channel; //设置通道亲和性,使用指定的MLU cluster做推理
cnrtInvokeParam_t invokeParam; //invoke参数
invokeParam.invoke_param_type=CNRT_INVOKE_PARAM_TYPE_0;
invokeParam.cluster_affinity.affinity=&affinity;
CNRT_CHECK(cnrtInvokeRuntimeContext_V2(ctx,nullptr,param,queue,&invokeParam));
CNRT_CHECK(cnrtPlaceNotifier(notifier_end, queue));
CNRT_CHECK(cnrtSyncQueue(queue));
//拷贝MLU输出到CPU内存
CNRT_CHECK(cnrtMemcpy(outputCpuPtrS[output_idx],outputMluPtrS[output_idx],outputSizeS[output_idx],CNRT_MEM_TRANS_DIR_DEV2HOST));
auto t1=GetTickCount();
float hwtime;
CNRT_CHECK(cnrtNotifierDuration(notifier_start, notifier_end, &hwtime));
printf("HardwareTime:%f(ms) E2ETime:%f(ms)\n",hwtime/1000.0,t1-t0);
int dim_order[4] = {0, 3, 1, 2};
CNRT_CHECK(cnrtGetOutputDataShape(&dimValues,&dimNum,output_idx,function));
if(dimNum==4)
{
//NHWC->NCHW half->float32
CNRT_CHECK(cnrtTransOrderAndCast(reinterpret_cast<void*>(outputCpuPtrS[output_idx]), outputTypeS[output_idx],
reinterpret_cast<void*>(outputCpuNchwPtrS[output_idx]), CNRT_FLOAT32,
nullptr, dimNum, dimValues, dim_order));
}
else
{
//数据类型转换 half->float32
CNRT_CHECK(cnrtCastDataType(reinterpret_cast<void*>(outputCpuPtrS[output_idx]),
outputTypeS[output_idx],
reinterpret_cast<void*>(outputCpuNchwPtrS[output_idx]),
CNRT_FLOAT32,
outputSizeS[output_idx]/2,nullptr));
}
//打印输出结果
float *output_ptr=(float*)outputCpuNchwPtrS[output_idx];
cout << "boxnum:" << output_ptr[0] << endl;
vector<vector<vector<float>>> detections = getResults(output_ptr, dimNum, dimValues);
cout << "=========================" << endl;
for(auto& d0:detections)
for(auto &d1:d0){
for(auto &re:d1)
cout << re << " ";
cout << endl;
}
cout << "=========================" << endl;
vector<string> labels;
readLabels(label_filename, labels);
writeVisualizeBBox(imgs, detections,labels,
img_names, input_height);
free(dimValues);
CNRT_CHECK(cnrtSetCurrentDevice(dev));
CNRT_CHECK(cnrtDestroyQueue(queue));
CNRT_CHECK(cnrtDestroyFunction(function));
CNRT_CHECK(cnrtUnloadModel(model));
cnrtDestroyNotifier(¬ifier_start);
cnrtDestroyNotifier(¬ifier_end);
for (int i = 0; i < inputNum; i++) {
free(inputCpuPtrS[i]);
cnrtFree(inputMluPtrS[i]);
}
for (int i = 0; i < outputNum; i++) {
free(outputCpuPtrS[i]);
free(outputCpuNchwPtrS[i]);
cnrtFree(outputMluPtrS[i]);
}
free(param);
free(inputCpuPtrS);
free(outputCpuPtrS);
cnrtDestroyRuntimeContext(ctx);
return 0;
}热门帖子
精华帖子